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Part 2

Towards a quantitative description :
the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings
2. The global scattering approach (Landauer-Schwinger)

3. How to relate local quantum crossings to the global
scattering approach ?

4. A brief overview on Anderson localization phase
transition
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Multiple scattering of electrons

2 characteristic lengths:
Wavelength: A, =k,
Elastic mean freepath: | (Disorder - Origin ?)

Wesk disorder A, <& [ : independent scattering events




Multiple scattering of electrons

e P L
We shall be LS %:
Interested : . Weﬁ
only by this

limit

2 Characta .. .agths;
Wavelength: A, = k'
Elastic mean freepath: | (Disorder - Origin ?)

Wesk disorder A, <& [ : independent scattering events
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Probability of quantum diffusion

Propagation of awavepacket centered a energy e between any two point
It Is obtained from the probability amplitude (Grean’sfunction for the

affICIOnc’idOsl) Ge(r, I'/) _ Z A] (I', I'/)
J

Superposition of amplitudes associated to all multiple scattering
trajectories that relater and r’ .
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Probability of quantum diffusion

Propagation of awavepacket centered a energy ¢ between any two points.
It Is obtained from the probability amplitude (Grean’sfunction for the

affICIOnadOsl) Ge(r, I'/) _ Z AJ (I', I'/)
J

Superposition of amplitudes associated to all multiple scattering
trajectories that relater and r’ .
The probability of quantum diffusion averaged over disorder Is:

P(r,r) oc [Ge(r, )2 = ) JA;(r,e)2 + ) Af(r,r) A (r, 1)
j

/ y

classica term

Interference betwen
ddinct trgectones vanidhes
Ljpon averaging
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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because
of large phase differences.
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Before averaging : speckle pattern (fuII coherence)
Configuration average: most of the contributions vanish because
of large phase differences.

A new design !

A
r/vAYv\ ~ Vanishes upon averaging
SN el o) T

r :> Pcl I‘ I‘ Z|A r, I' 2 Diffuson
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The diffusion approximation:

How to calculate P.;(r, r")? It may be obtained as an iteration equati

R
e%e

Iteration of the Drude-Boltzmann term {po(r,r') =G(r,r\G'(r',1) = =
J

1
P.,(r,r") = Py(r,r’) + = /dr” (v, ) Py(r”, 1) Summetion over

scattering sequences

T

e

on
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The diffusion approximation:

How to calculate P.;(r, r')? It may be obtained as an iteration equation
J}( )
e e

RZ

Iteration of the Drude-Boltzmann term {po(r,r') =G(r,r\G'(r',1) =
J

1
Pcl (I’, I’/) — P()(r, I'/) -+ % /dr” cl (I', I’//)P()(I'//7 I'/) Summation over

e scattering sequences

In the limit of slow spatial and temporal

variations, |r —r'| > ]_and t > 7.
[g — DA}P (r,r",t) = 0(r —r")d(1) A
Ot cl\t,1 — with D = -&¢

(diffusion equation)

Thursday, September 19, 13



The diffusion motion Is characterized by Its elementary step,
the elastic mean free path . related to the elastic collision
time by /. = v, 7.

S”\ie' (R*) = Dt withD =v,4l./3
. A

traversal time (Thouless time) : [LQ — ij

<

L > e
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The diffusion motion Is characterized by Its elementary step,
the elastic mean free path . related to the elastic collision
time by /. = v, 7.

S| e oo
o A

traversal time (Thouless time) : [LQ — ij

<

L > e

diffusive ergodic L

| >

|
ballistic 7Te TD

-« —]« >

mesoscopic limit T4 classical limit
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The diffusion motion is characterized by its elementary step,
the elastic mean free path /. related to the elastic collision
time by /. = v, 7.

S| e oo
o A

traversal time (Thouless time) :[L2 — DTD]

<

L > e

diffusive ergodic L
| | »
ballistic 7e TD

-« —]« >

mesoscopic limit T4 classical limit
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Did we miss something /
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The probability of quantum diffusion must be normalized,

Jdr’P(r,r’,t):l Vi < P(q:O,a)):I—
0
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Nor malization of the probability

The probability of guantum diffusion must be normalized,
jdr’P(r,r’,t) =1 Vi P(=0w)= L
0

At the approximation of the Diffuson, we have from the iteration

ed. Py (
0 Q7w)
Pd(q’w) — 1 Py (q,w)

Te
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Nor malization of the probability

The probability of guantum diffusion must be normalized,

jdr’P(r,r’,t):l Vi & P(q:O,a)):I—
0

At the approximation of the Diffuson, we have from the iteration

eq. Py (
L 0 Q7w)
Pd(q’w) - 1 Po(gq,w)
g
N\ P L X
\ S dY”Pd@’Y\ 0
Po@‘)f’\ T
Y )~

Pd&fv
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Nor malization of the probability

The probability of quantum diffusion must be ,

jdr’P(r,r’,t):l Vi & P(q:O,w):I—
0

At the approximation of the Diffuso e Iteration

< P
Pcl(Qaw) — O(q {
1
since Te 1
— PC — O7 — =

The Diffuson provides a normalized approx. to the probability of
Quantum diffusion! Missing terms ?
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Nor malization of the probability

The probability of guantum diffusion must be normalized,

jdr’P(r,r’,t):l Vi & P(q:O,w):I—
0

At the approximation of the Diffuson, we have from the iteration

€q. Py (
L 0 Q7w)
Pd(q’w) - 1 POS_CLW)
since Te 1
PO(qyw):l—iWT >Pcl(q:()7w):;

The Diffuson provides a normalized approx. to the probability of
Quantum diffusion! Missing terms ?
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Reciprocity theorem

For time reversal invariant systems, Green’s functions have the property:

G(r,r’,t) =G(r’,r,t)
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Reciprocity thm. states that the complex amplitude associated to a
multiple scattering sequence and its time reversed are equal.
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Reciprocity theorem

For time reversal invariant systems, Green’s functions have the property:

G(r,r’,t) =G(r’,r,t)

Reciprocity thm. states that the complex amplitude associated to a
multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of P,;(r,r’) gives P (r',r)

P(r,r") o< |Ge(r,1")|?
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Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

G(r,r’,t) =G(r’,r,t)

Reciprocity thm. states that the complex amplitude associated to a
multiple scattering sequence and itstime reversed are equal.

By reversing the two amplitudesof P, (r,r") gives P (7', r)

Reversing only ONE of the two amplitudes should also give a
contribution to the probability, but it is not anymore a Diffuson!

Thursday, September 19, 13



Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

G(r,r’,t) =G(r’,r,t)

Reciprocity thm. states that the complex amplitude associated to a
multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudesof P, (r,r") gives P (7', r)

Reversing only ONE of the two amplitudes should also give a
contribution to the probability, but it is not anymore a Diffuson!

The Diffuson approx. does not take into account all contributions to
the probability.
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Iy Ty = Ip - — Ty — Ty — I

(@)

ro > -, —TFy- -+ —TIp — Ty — Ty
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Iy Ty = Ip - — Ty — Ty — I

(@)

ro > -, —TFy- -+ —TIp — Ty — Ty
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Iy Ty = Ip - — Ty — Ty — I

(a)
rs — -, — Iy —TIp —> Iy —TI
(b)
incoherent Interference term
classical term
The total average intensity Is: \

| /
[A(k, k') [? = Z f(r1,r2)|? {1 + ei(k+k')-(r1—r2)}

rpg,ro
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AWK = 3 [f(re,r2)[? |14 it (ra)

4

Generally, the interference term vanishes due to the
sum over ri and rg, except for two notable cases.
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Generally, the interference term vanishes due to the
sum over ry and ra, except for two notable cases:

k + k' ~ 0 : Coherent backscattering

Coherent backscattering
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AWK = 3 [f(re,r2)[? |14 it (ra)

rpg.,ro

Generally, the interference term vanishes due to the
sum over ri and ro, except for two notable cases:

r, —ro ~ (: closed loops, weak localization and ¢ /2 periodicity
of the Sharvin effect.
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A Diffuson isthe product of 2 complex amplitudes: it can be viewed as
a’ diffusive trgjectory with a phase’. Coherent effects result from the
Cooperon which can be viewed as a self-crossing
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Quantum crossings

A Diffuson isthe product of 2 complex amplitudes: it can be viewed as
a’ diffusive trgectory with a phase’. Coherent effects result from the
Cooperon which can be viewed as a self-crossing

7/ Crossing mixes the amplitudes and pair
| | them differently = phase shift.

Small phase shift <27 = crossing spatially
localized
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Quantum crossings

A Diffuson isthe product of 2 complex amplitudes: it can be viewed as
a’ diffusive trgectory with a phase’. Coherent effects result from the
Cooperon which can be viewed as a self-crossing

Ny Crossing mixes the amplitudes and pair
" them differently = phase shift.

Small phase shift <27 = crossing spatially
localized

volume of a crossing
d—1
A,
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Quantum crossings

A Diffuson isthe product of 2 complex amplitudes: it can be viewed as
a’ diffusive trgectory with a phase’. Coherent effects result from the
Cooperon which can be viewed as a self-crossing

Ny Crossing mixes the amplitudes and pair
" them differently = phase shift.
Small phase shift <27 = crossing spatially

localized
Crossing probability of 2 diffusons:
volume of acrossin T AdL
\d—17 : J[-)Ad 1Vg dat 1
: P, = ==
3 o L9
A t,=L*/D ]
>-< S S |

QSN 77 3N
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Weak disorder limit: - A< =g>>1
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Weak disorder limit: - A< =g>>1

Probability of acrossing (- 1/g) issmall: phase coherent corrections
to the classical limit are small.

Thursday, September 19, 13



Weak disorder mit: A< | =g>>1

Probability of acrossing (- 1/g) issmall: phase coherent corrections
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)
but It remains normalized.
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Weak disorder physics

A<<| =g>>1

Probability of acrossing (- 1/g) issmall: phase coherent corrections
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)
but 1t remains normalized.

Due to its long range behavior, the Diffuson propagates (localized)
coherent effects over large distances.
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Weak disorder physics

AN<<| =g>1

Probability of acrossing (e 1/g) is small: phase coherent corrections
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)
but It remains normalized.

Due to its long range behavior, the Diffuson propagates (localized)
coherent effects over large distances.

Quantum crossings are independently distributed

We can generate higher order corrections to the Diffuson
as an expansion in powersof 1/ g
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In the presence of a dephasing mechanism that breaks time coherence,
only trgjectorieswith ¢ < 7, contribute.
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In the presence of a dephasing mechanism that breaks time coherence,
only trgjectorieswith ¢ < 7, contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the
Cooperon acquire opposite phases:

Cooperon
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In the presence of a dephasing mechanism that breaks time coherence,
only trgjectorieswith ¢ < 7, contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the
Cooperon acquire opposite phases:

Cooperon
Pyt (r, ', t) isobtained from the covariant diffusion eguation

effective charge 2e

( Ly 2 p [vr, " z-A(r’)] ) Pint (1,77, 1) = 8(r = 1)5(2)

Ty O
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To the classical probability corresponds
"~ the Drude conductance G,

A'J_
|
1
|
1
{1
W
'/
v
A\
/
\
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To the classical probability corresponds
"~ the Drude conductance G,

First correction (o< 1/g) Involves one quantum
crossing and the probability p, (7) to have a

closed loop:
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To the classical probability corresponds
"~ the Drude conductance G,

First correction (o< 1/g) Involves one quantum
crossing and the probability p, (7) to have a

closed loop:

0. (7,) :fj’ 7L guantum correction decreases
9% \TD the conductance: weak localization

T\ d/2
Return probability Z(t) = / dr Pyt (r, 7, t) = <4—m)
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Quantum mesoscopic physics .

the global scattering approach

(Landauer-Schwinger)
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An Intermezzo !

global vs. local

eeeeeeeeeeeeeeeeeeeeeee



Alm of the Intermezzo:

to present in general terms, a global (i.e. non local) approach to
account for both the thermodynamic and the non equilibrium
behavior of quantum complex systems
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Elastic di- ~der does not break phase coherence

and A 1ce irreversibility
D Ia i 1ess and
emlnder
All symmetries ai are no good

guantum numbers.
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Elastic disorder does not break phase coherence

and 1t does not introduce irreversibility

Disorder introduces randomness and

complexity:

All symmetries are lost, there are no good

guantum numbers.
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Exemple: speckle patterns in optics

Diffraction -
through a circular
aperture: order in

interference

Transmission of
light through a
disordered
suspension:
complex system
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Alm of the Intermezzo:

to present in general terms, a global (i.e. non local) approach to
account for both the thermodynamic and the non equilibrium
behavior of guantum complex systems

In complex systems (metals, dielectrics, ...), it Is difficult to obtain
local quantities and sometimes it Is even impossible. But in many
cases, It Is also not necessary.
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Alm of the Intermezzo:

to present in general terms, a global (i.e. non local) approach to
account for both the thermodynamic and the non equilibrium
behavior of guantum complex systems

In complex systems (metals, dielectrics, ...), it Is difficult to obtain
local quantities and sometimes it Is even impossible. But in many
cases, It Is also not necessary.

Use a global description : Landauer-Schwinger
approach

Thursday, September 19, 13



Basics: Usually we start from local differential equations and try to solve them

with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in
terms of local Green’s functions for the guantum coherent matter field (electrons)
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Basics: Usually we start from local differential equations and try to solve them

with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in
terms of local Green’s functions for the guantum coherent matter field (electrons)

» h T TR TR
Oxx(w) = S—Q— Tr []x ImG, . jx ImG ]

= €EF—w
T F F

2
e-h”

/-
Oqp(r,r) = —s 5

[&)O,Ime(r.r’) %Ime r'.r) — Ime (r.r') oy BéIme ', r)]
2T m=
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This approach is often doomed to failure due to either :

Thursday, September 19, 13



This approach is often doomed to failure due to either :

|. local divergences of the Green’s functions close to a boundary

PHYSICAL REVIEW D VOLUME 20, NUMBER 12 15 DECEMBER 1979

Boundary effects in quantum field theory

D. Deutsch and P. Candelas
Center for Theoretical Physics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712
(Received 15 September 1978)

Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the
renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to
diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the
inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of
this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic
series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of
the distance. Some criticisms are made of the usual approach to this problem, which is via the “renormalized
mode sum energy,” a quantity which is generically infinite. Green’s-function methods are used in explicit
calculations, and an iterative scheme is set up to generate asymptotic series for Green’s functions near a
smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the
Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth
boundary.
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This approach is often doomed to failure due to either :

|. local divergences of the Green’s functions close to a boundary
PHYSICAL REVIEW D VOLUME 20, NUMBER 12 15 DECEMBER 1979

Boundary effects in quantum field theory

D. Deutsch and P. Candelas
Center for Theoretical Physics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712
(Received 15 September 1978)

Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the
renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to
diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the
inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of
this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic
series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of
the distance. Some criticisms are made of the usual approach to this problem, which is via the “renormalized
mode sum energy,” a quantity which is generically infinite. Green’s-function methods are used in explicit
calculations, and an iterative scheme is set up to generate asymptotic series for Green’s functions near a
smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the
Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth
boundary.

2. average over existing intrinsic disorder : no analytic known solution of the

Anderson problem either for weak or strong disorder.
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3. It can be also because we simply do not have local differential
egs., e.g. on fractals

.6. .G.

vvv ' vvv
8 A &6

.W!Ve W!Ve W!W eV!Ve
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3. It can be also because we simply do not have local differential
egs., e.g. on fractals

4. Or because the physical quantity we wish to calculate does not
have a local description : for instance there exists a local wave eq.

but we do not have a (local) Kubo formula for the diffusion
coefficient.
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Transport in a metal : Landauer approach

|. Electric transport:

Local Kubo formulation for the electric current:

7\, . . . . ’
where O(X,X")is the local conductivity (response) expressed in terms of local solutions (Green’s
functions).
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Transport in a metal : Landauer approach

|. Electric transport:

Local Kubo formulation for the electric current:

where @(x,x”)is the local conductivity (response) expressed in terms of local solutions (Green’s
functions).

The Landauer formula proposes an equivalent global description based on SCattering data.

Z
v o
left 8Ln — | scatterer | < %Bn  right ,
reservolr bLn - — bR" reservoir

a BN
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Transport in a metal : Landauer approach

|. Electric transport:

Local Kubo formulation for the electric current:

where @(x,x”)is the local conductivity (response) expressed in terms of local solutions (Green’s
functions).

The Landauer formula proposes an equivalent global description based on SCattering data.

e2
G = ngab

b a

3 RN R PR A 2
AN = S
NS S

(@) (b) (©) (d)
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2.Waves through complex disordered/chaotic media:

for instance there exists a local wave eq. but we do not have a
(local) Kubo formula for the diffusion coefficient.

But there is a well defined Landauer description based on the
Scattering matrix- [ransmission coefficient, etc.

b  a
D A
s TS ©

(@) (b) () (d)

\LSD
N
v
N

A
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Spectral properties- Thermodynamics :
Krein-Schwinger formula

Waves in free space : Density of states p (@) per unit volume.
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Spectral properties- Thermodynamics :
Krein-Schwinger formula

Waves in free space : Density of states p (@) per unit volume.

Scatterer: y
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Spectral properties- Thermodynamics :
Krein-Schwinger formula

Waves in free space : Density of states p, (@) per unit volume.

Scatterer:
_,’_N/
ot

«\-_ -

The S=matrix accounts for all relevant changes : e.g. DOS p(a)) of the waves in the presence
of the scatterer is:

p(w)—p, ()= 1 Im iln Det S(w) Krein formula
T dw
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Spectral properties- Thermodynamics :
Krein-Schwinger formula

Waves in free space : Density of states p, (@) per unit volume.

Scatterer:
_,’_N/
ot

«\-_ -

The S=matrix accounts for all relevant changes : e.g. DOS p(a)) of the waves in the presence
of the scatterer is:

|
p(w)—p,(®)=——m iln Det S(w) Krein formula
T dw

Thermodynamic changes can be deduced from this formula:

Variation of the partition function (Dashen,Ma,Bernstein):

Tre P —Tre PHo =—ljdwe"ﬂ“’ Sm iln Det S(w) H=H,+V
T dw
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Thermodynamics @ persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

N 4=

-
;:S
1]

Q| S

Thursday, September 19, 13



Thermodynamics @ persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

N ey

h
L 0=
€

Energy spectrum of an electron in a Aharonov-Bohm magnetic flux
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Thermodynamics @ persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

N 4=

Disordered metal

Less easy !
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Thermodynamics @ persistent current in a mesoscopic ring submitted to a

Aharonov-Bohm flux
H\dx«m

\
\eads °
. had 0,

h
€
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Thermodynamics @ persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

(N —y

'
i

| 0
1(9)=5— dEﬁln DetS(E, )
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Thermodynhamics @ persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

N by

L\J ?, Eﬁ
€

1(¢9) = ﬁ |dE %m DetS(E, o)

Electrical conductance G (out of equilibrium)

e
N

Equivalent to the Landauer formula.
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From Kubo to Landauer




From Kubo to Landauer

2R3

Oaf r.r'y = —s [aaIme r,r’ )8;31me '.r) — Ime r,r)d, 8;31me (r’,r)]

27t m?2
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From Kubo to Landauer

2R3

Oaf r.r'y = —s [80,1me r,r’ ')B;SIme '.r) — Ime r,r)d, 81/31mG§ (r’,r)]

27t m?2




From Kubo to Landauer

2R3

Oaf r.r'y = —s [aaIme r,r’ )8;31me '.r) — Ime r,r)d, 8;31me (r’,r)]

27t m?2

N Lo - R S

left 8Ln —= | scatterer GRn  right _
reservoir bLn - — bRn reservoir

e BN
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From Kubo to Landauer

J/QJ
N
v
N
|

T, :‘tab‘z a | [Np

(@) (b) () / (d)

LANDAUER FORMULA
2

G="Trtt
h
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QUANTUM CONDUCTANCE

AND SHOT NOISE

Slab geometry - two-terminal conductors

Ty = ‘tab‘z

b a
al P N T e 2 N 2
2’ e AR AN

@) (b) © / (d)

LANDAUER FORMULA




Noise power is defined as the symmetric
current-current correlation function

S(w.V) = j dt ' <5i(z)5i(0)+5i(o>5i(r)>

where 81(r)=1(r)-(I) are electronic current operators

Equilibrium noise (V=0)

S(@.0)=2G coth(ﬂ)
T

(Nyquust fluctuation-dissipation)
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Non-equilibrium noise V # 0 at 7 =0

Excess noise measures the second cumulant of charge
Hluctuations :

5(0,v)-5(0,0) (0?)~(Q, )’
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THE FANO FACTOR
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N
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T,1S THE TRANSMISSION COEFFICIENT ALONG
THE CHANNEL ab

F TAKES A UNIVERSAL VALUE 1/3 FOR WEAKLY
DISORDERED ‘“ONE-DIMENSIONAL’” METALS
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To end this intermezzo :

Well known examples (Landauer-Schwinger approach).
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To end this intermezzo :

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like
the S-matrix.

Physically relevant quantities of a system are expressed in terms of in-out signals, including
correlations.
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To end this intermezzo :

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like
the S-matrix.

Physically relevant quantities of a system are expressed in terms of in-out signals, including
correlations.

This idea has been successfully used in Quantum mesoscopic physics, quantum optics,
guantum field theory,...

It is relatively new and promising in other fields:

1.Shannon information theory- MIMO (Multiple input-Multiple output)

2.Full counting statistics and shot noise (quantum mesoscopic physics)

3.0ut of equilibrium quantum systems- Wigner time delay

4.Casimir effects

5.Non-perturbative effects (Unruh effects, Hawking radiation, Schwinger pair production,...)
6.Waves and quantum mechanics on fractal structures.
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Energy spectrum - Thermodynamics - Transport ?
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Energy spectrum - Thermodynamics - Transport ?
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Energy spectrum - Thermodynamics - Transport ?

and calculate the S-matrix : possible
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How to connect the 2 previous approaches:
* Local quantum crossings

* Global Landauer scattering formalism
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Beyond the conductance
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%= . . .
e, { Fluctuations and correlati ons}
transmission coefficient
a | b 2
a /\/\W b \ Tab — ‘tab‘

e product
> A Y Al A AL swithor
a /| [Np > O S Ings

(@) (b) () (d)

\LQJ
N

lon of the
transmission coefficient :

Slab geometry
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¥=—s=="" - s . .
e, {FI uctuations and correl at ons}
transmission coefficient
A~ N+ P _ 2
: /M\ : correlations involve the product
@ of 4 complex amplitudes with or

without quantum crossings

Correlation function of the
transmission coefficient :

Slab geometry
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%= o : :
{FI uctuations and correl at ons}
transmission coefficient
A~ N+ P _ 2
: /M\ : correlations involve the product
(H) of 4 complex amplitudes with or

\/ without quantum crossings

. Correlation function of the
® © transmission coefficient :

(d) (€)

Slab geometry
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A direct consequence: quantum corrections to electrical
transport

2

€
Cla N()t C L =g X 7 withg > 1

2

e ] )
SO that AG=#7 IS universal

Thursday, September 19, 13



THE FANO FACTOR

iISD
N

_Sov)-s00)_ 20T
el YT,

(@)

T, IS THE TRANS Sinceweknowhowtoget 1 ao| onG
?
THE CHANNE numbers, what about that one °

N

F TAKES A UNIVERSAL VALUE 1/3 FOR WEAKLY
DISORDERED ‘“ONE-DIMENSIONAL’” METALS
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Summary ... and closed loops

Weak |ocalization corrections to the
electrical conductance

AN AN NN

A 1P
yéb - —Goc == J Z(t) a
0 Tp

N I:l‘
I A\ G g
NN / AT . cl
\?'».
N

Z(t)= fdr P,(r,r,t)= (Z—;t)
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Summary ... and closed loops

Weak |ocalization corrections to the
electrical conductance

Lon_ AN

T
/”'\\ AG 1 ¢ dt
P e e
AArONAAN G 9 % o

{:;m:/ \"‘._—: -~ CI
\\\ l.(
Y -"
7 'L:\\ £ ~
.‘_‘\J-"

Conductance fluctuations

Z(t)= fdr P,(r,r,t)= (:—;t)
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An exercise
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Dephasing and decoherence

Universal conductance fluctuations
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Dephasing and decoherence

Universal conductance fluctuations

Thereare 4 diagrams : 2
Involve diffusons and 2
cooperons.

How to differentiate
them ?
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Dephasing and decoherence

Universal conductance fluctuations

Thereare 4 diagrams : 2
Involve diffusons and 2
cooperons.

How to differentiate
them ?

sensitive to an applied
Aharonov-Bohm magnetic flux

¢
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Dephasing and decoherence

Universal conductance fluctuations

2 Cooper ons}

sensitive to an applied
Aharonov-Bohm magnetic flux

¢
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16.5 —

[ 3 ’!." E ! '
16.3 - P
)
f ¢ ?

16.1

46 S- doped GaAs samples at 45 mK
(Mallly-Sanquer)

We expect the conductance
fluctuations to be reduced by afactor 2

500 1500

L 165 (b) —2
G 5G2 —¢> 5&
16.3 ——/fv S e e S — 2
\ vanishing of the weak localization
Te correction for the same magnetic field
0 G2 Q\J\w WA A /\ s - In the presence of incoherent
100 1 VAR processesL > L :

500 1500 B (G)

5G2 — (
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Beyond weak disorder - a
glimpse of Anderson

localization phase transition

eeeeeeeeeeeeeeeeeeeeeee



Weak disorder physics

AN<<| =g>1

Probability of acrossing (e 1/g) is small: phase coherent corrections
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)
but It remains normalized.

Due to its long range behavior, the Diffuson propagates (localized)
coherent effects over large distances.

Quantum crossings are independently distributed

We can generate higher order corrections to the Diffuson
as an expansion in powersof 1/ g
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A guantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.
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A guantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization)
and becomes size dependent :

D(L) = D(l——ln('/) (—In 2+....) (d =2)

9

This singular perturbation expansion Is not a simple coincidence
but an expression of scaling
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A guantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization)
and becomes size dependent :

D(L) = D(l——ln('/) (—In 2+....) (d =2)

9

This singular perturbation expansion Is not a simple coincidence
but an expression of scaling

A renormalization of D(L) changes also g(L):

D) -

g(L) =

116
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Scaling and I1ts meaning :  (PW. Anderson et al.,1979)

If we know g(L), we know it at any scale :
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Scaling and I1ts meaning :  (PW. Anderson et al.,1979)

If we know g(L), we know it at any scale :

g(L(1+¢))=f(g(L).€)

Expanding, we have ¢ (L(1 +¢)) = g(L) (1 +¢B(g) + O(g "))

dln g

with  B(g) = TIn T, Gell-Mann - Low function)
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Scaling and I1ts meaning :  (PW. Anderson et al.,1979)

If we know g(L), we know it at any scale :

g(L(1+¢))=f(g(L).€)

Expanding, we have ¢ (L(1 +¢)) = g(L) (1 +¢B(g) + O(g "))

dln g

with  B(g) = T L, Gell-Mann - Low function)

Scaling behavior :
g(L,W) = f (%(W))

E(W) isthelocalization length

120
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Numerical calculations on the (universal) Anderson
Hamiltonian

d=2 d=3

Anderson phase
transition

o(LW) =«
| 7

4

é’ ‘a
Ffor
? )
-4

1€

. '-'!

x [}
z 107 U
Y -5 =

'!

il
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il “' o P"‘ y o e B Kramer, A. McKinnon, 1981

FIG. 1, Scaling function Ay, /M vs AL/M for the localization length A, of a svstem of thickness M for (a) d =2 (M
D oand () @ <3 (M= 3). Insets show the scaling parameter A, as a function of the disorder W.

Anderson localization phase transition occurs in d > 2

It has been observed experimentally with electromagnetic waves
(Aegarter, Maret et al., 20006)
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