Physique mesoscopique des electrons et des photons Structures fractales et quasi-periodiques

ERIC AKKERMANS
PHYSICS-TECHNION

Technion
 Israel Institute of Technology

Aux frontieres de la physique mesoscopique,
Mont Orford Quebec, Canada, Septembre 2013

Part 2

Towards a quantitative description : the tools of quantum mesoscopic physics

Part 2

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings

Part 2

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings
2. The global scattering approach (Landauer-Schwinger)

Part 2

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings
2. The global scattering approach (Landauer-Schwinger)
3. How to relate local quantum crossings to the global scattering approach?

Part 2

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings
2. The global scattering approach (Landauer-Schwinger)
3. How to relate local quantum crossings to the global scattering approach?
4. A brief overview on Anderson localization phase transition

Multiple scattering of electrons

2 characteristic lengths:
Wavelength: $\lambda_{F}=k_{F}^{-1}$
Elastic mean free path: l (Disorder - Origin ?)

Weak disorder $\lambda_{F} \ll l$: independent scattering events

Multiple scattering of electrons

We shall be interested only by this limit

2 charactern......ngths:
Wavelength: $\lambda_{F}=k_{F}^{-1}$
Elastic mean free path: l (Disorder - Origin ?)

Weak disorder $\lambda_{F} \ll l$: independent scattering events

Probability of quantum diffusion

Propagation of a wavepacket centered at energy ϵ between any two points. It is obtained from the probability amplitude (Green's function for the afficionados!) :

$$
G_{\epsilon}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{j} A_{j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

Superposition of amplitudes associated to all multiple scattering trajectories that relater and \mathbf{r}^{\prime}.

Probability of quantum diffusion

Propagation of a wavepacket centered at energy ϵ between any two points. It is obtained from the probability amplitude (Green's function for the afficionados!) :

$$
G_{\epsilon}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{j} A_{j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

Superposition of amplitudes associated to all multiple scattering trajectories that relate \mathbf{r} and \mathbf{r}^{\prime}.
The probability of quantum diffusion averaged over disorder is:

$$
P\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \propto \overline{\left|G_{\epsilon}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right|^{2}}=\overline{\sum_{j}\left|A_{j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right|^{2}}+\overline{\sum_{i \neq j} A_{i}^{*}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) A_{j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)}
$$

classical term
interference between distinct trajectories: vanishes upon averaging

Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because of large phase differences.

Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because of large phase differences.

A new design!

Vanishes upon averaging

Diffuson

The diffusion approximation:

How to calculate $P_{c l}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$? It may be obtained as an iteration equation Iteration of the Drude-Boltzmann term $P_{0}\left(r, r^{\prime}\right)=\bar{G}\left(r, r^{\prime}\right) \bar{G}^{*}\left(r^{\prime}, r\right) \propto \frac{e^{-k / l_{e}}}{R^{2}}$

$$
P_{c l}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=P_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+\frac{1}{\tau_{e}} \int d \mathbf{r}^{\prime \prime} P_{c l}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right) P_{0}\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}\right)
$$

The diffusion approximation:

How to calculate $P_{c l}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$? It may be obtained as an iteration equation Iteration of the Drude-Boltzmann term $P_{0}\left(r, r^{\prime}\right)=\bar{G}\left(r, r^{\prime}\right) \bar{G}^{*}\left(r^{\prime}, r\right) \propto \frac{e{ }^{-1}}{R^{2}}$
$P_{c l}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=P_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+\frac{1}{\tau_{e}} \int d \mathbf{r}^{\prime \prime} P_{c l}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right) P_{0}\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}\right)$

Summation over scattering sequences

In the limit of slow spatial and temporal variations, $\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \gg l_{e}$ and $t \gg \tau_{e}$ (Aiffuson

$$
\left[\frac{\partial}{\partial t}-D \Delta\right] P_{c l}\left(\mathbf{r}, \mathbf{r}^{\prime}, t\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta(t)
$$

$$
\text { with } D=\frac{v_{k} l_{e}}{3}
$$

(diffusion equation)

Mesoscopic limit: characteristic length scales

The diffusion motion is characterized by its elementary step, the elastic mean free path l_{e} related to the elastic collision time by $l_{e}=v_{g} \tau_{e}$

$$
\left\langle R^{2}\right\rangle=D t \quad \text { with } D=v_{g} l_{e} / 3
$$

traversal time (Thouless time) : $L^{2}=D \tau_{D}$

Mesoscopic limit: characteristic length scales

The diffusion motion is characterized by its elementary step, the elastic mean free path l_{e} related to the elastic collision time by $l_{e}=v_{g} \tau_{e}$

$$
\left\langle R^{2}\right\rangle=D t \quad \text { with } D=v_{g} l_{e} / 3
$$

traversal time (Thouless time) : $L^{2}=D \tau_{D}$

Mesoscopic limit: characteristic length scales

The diffusion motion is characterized by its elementary step, the elastic mean free path l_{e} related to the elastic collision time by $l_{e}=v_{g} \tau_{e}$

$$
\left\langle R^{2}\right\rangle=D t \quad \text { with } D=v_{g} l_{e} / 3
$$

traversal time (Thouless time) : $L^{2}=D \tau_{D}$

Did we miss something ?

Normalization of the probability

The probability of quantum diffusion must be normalized,

$$
\int d r^{\prime} P\left(r, r^{\prime}, t\right)=1 \quad \forall t \Leftrightarrow \quad P(q=0, \omega)=\frac{i}{\omega}
$$

Normalization of the probability

The probability of quantum diffusion must be normalized,

$$
\int d r^{\prime} P\left(r, r^{\prime}, t\right)=1 \quad \forall t \Leftrightarrow \quad P(q=0, \omega)=\frac{i}{\omega}
$$

At the approximation of the Diffuson, we have from the iteration eq.

$$
P_{c l}(q, \omega)=\frac{P_{0}(q, \omega)}{1-\frac{P_{0}(q, \omega)}{\tau_{e}}}
$$

Normalization of the probability

The probability of quantum diffusion must be normalized,

$$
\int d r^{\prime} P\left(r, r^{\prime}, t\right)=1 \quad \forall t \Leftrightarrow \quad P(q=0, \omega)=\frac{i}{\omega}
$$

At the approximation of the Diffuson, we have from the iteration eq.

$$
P_{c l}(q, \omega)=\frac{P_{0}(q, \omega)}{1-\frac{P_{0}(q, \omega)}{\tau_{e}}}
$$

$$
P_{c l}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=P_{0}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)+\frac{1}{\tau} \int d \boldsymbol{r}^{\prime \prime} P_{c l}\left(\boldsymbol{r}, \mathfrak{r}^{\prime \prime}\right) P_{0}\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}\right)
$$

Normalization of the probability

The probability of quantum diffusion must be normalized,

$$
\int d r^{\prime} P\left(r, r^{\prime}, t\right)=1 \quad \forall t \Leftrightarrow \quad P(q=0, \omega)=\frac{i}{\omega}
$$

At the approximation of the Diffuson the iteration eq.
since

$$
P_{c l}(q, \omega)=\frac{P_{0}\left(q\left(P_{0}\left(r, r^{\prime}\right)=\bar{G}\left(r, r^{\prime}\right) \bar{G}^{*}\left(r^{\prime}, r\right) \propto \frac{e^{-R / /}}{1-\frac{P}{0}^{R^{2}}}\right)\right.}{\tau_{e}}
$$

$$
P_{0}(q, \omega)=\frac{\tau_{e}}{1-i \omega \tau_{e}} \rightarrow P_{c l}(q=0, \omega)=\frac{i}{\omega}
$$

The Diffuson provides a normalized approx. to the probability of Quantum diffusion! Missing terms ?

Normalization of the probability

The probability of quantum diffusion must be normalized,

$$
\int d r^{\prime} P\left(r, r^{\prime}, t\right)=1 \quad \forall t \Leftrightarrow \quad P(q=0, \omega)=\frac{i}{\omega}
$$

At the approximation of the Diffuson, we have from the iteration eq.

$$
P_{c l}(q, \omega)=\frac{P_{0}(q, \omega)}{1-\frac{P_{0}(q, \omega)}{\tau_{e}}}
$$

since

$$
P_{0}(q, \omega)=\frac{\tau_{e}}{1-i \omega \tau_{e}} \rightarrow P_{c l}(q=0, \omega)=\frac{i}{\omega}
$$

The Diffuson provides a normalized approx. to the probability of Quantum diffusion! Missing terms ?

Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

$$
G\left(r, r^{\prime}, t\right)=G\left(r^{\prime}, r, t\right)
$$

Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

$$
G\left(r, r^{\prime}, t\right)=G\left(r^{\prime}, r, t\right)
$$

Reciprocity thm. states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

$$
G\left(r, r^{\prime}, t\right)=G\left(r^{\prime}, r, t\right)
$$

Reciprocity thm. states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{c l}\left(r, r^{\prime}\right)$ gives $P_{c l}\left(r^{\prime}, r\right)$

Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

$$
G\left(r, r^{\prime}, t\right)=G\left(r^{\prime}, r, t\right)
$$

Reciprocity thm. states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{c l}\left(r, r^{\prime}\right)$ gives $P_{c l}\left(r^{\prime}, r\right)$

Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

$$
G\left(r, r^{\prime}, t\right)=G\left(r^{\prime}, r, t\right)
$$

Reciprocity thm. states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{c l}\left(r, r^{\prime}\right)$ gives $P_{c l}\left(r^{\prime}, r\right)$ Reversing only ONE of the two amplitudes should also give a contribution to the probability, but it is not anymore a Diffuson!

Reciprocity theorem

For time reversal invariant systems, Green's functions have the property:

$$
G\left(r, r^{\prime}, t\right)=G\left(r^{\prime}, r, t\right)
$$

Reciprocity thm. states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{c l}\left(r, r^{\prime}\right)$ gives $P_{c l}\left(r^{\prime}, r\right)$ Reversing only ONE of the two amplitudes should also give a contribution to the probability, but it is not anymore a Diffuson!

The Diffuson approx. does not take into account all contributions to the probability.

The total average intensity is:

$$
\overline{\left|A\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\right|^{2}}=\overline{\sum_{\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}}\left|f\left(\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}\right)\right|^{2}\left[1+e^{i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{\mathbf{2}}\right)}\right]}
$$

$$
\overline{\left|A\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\right|^{2}}=\overline{\sum_{\mathbf{r}_{1}, \mathbf{r}_{2}}\left|f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\right|^{2}\left[1+e^{i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}\right]}
$$

Generally, the interference term vanishes due to the sum over $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$, except for two notable cases:

$$
\overline{\left|A\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\right|^{2}}=\overline{\sum_{\mathbf{r}_{1}, \mathbf{r}_{2}}\left|f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\right|^{2}\left[1+e^{i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}\right]}
$$

Generally, the interference term vanishes due to the sum over \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$, except for two notable cases: $\mathbf{k}+\mathbf{k}^{\prime} \simeq 0:$ Coherent backscattering

Coherent backscattering

$$
\overline{\left|A\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\right|^{2}}=\overline{\sum_{\mathbf{r}_{1}, \mathbf{r}_{2}}\left|f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\right|^{2}\left[1+e^{i\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}\right]}
$$

Generally, the interference term vanishes due to the sum over \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$, except for two notable cases:
$\mathbf{r}_{1}-\mathbf{r}_{2} \simeq 0:$ closed loops, weak localization and $\phi_{0} / 2$ periodicity of the Sharvin effect.

Quantum crossings

A Diffuson is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

Quantum crossings

A Diffuson is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

Crossing mixes the amplitudes and pair them differently \Rightarrow phase shift.
Small phase shift $\leq 2 \pi \Rightarrow$ crossing spatially localized

Quantum crossings

A Diffuson is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

Crossing mixes the amplitudes and pair them differently \Rightarrow phase shift.
Small phase shift $\leq 2 \pi \Rightarrow$ crossing spatially localized
volume of a crossing

$$
\lambda^{d-1} l_{e}
$$

Quantum crossings

A Diffuson is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

Crossing mixes the amplitudes and pair them differently \Rightarrow phase shift. Small phase shift $\leq 2 \pi \Rightarrow$ crossing spatially localized
Crossing probability of 2 diffusons:
volume of a crossing

$$
\lambda^{d-1} l_{e}
$$

$$
\tau_{D}=L^{2} / D
$$

$$
p_{\times}=\int_{0}^{\tau_{D}} \frac{\lambda^{d-1} v_{g} d t}{L^{d}}=\frac{1}{g}
$$

$$
g=\frac{l_{e}}{3 \lambda^{d-1}} L^{d-2} \gg 1
$$

Weak disorder physics

Weak disorder limit: $\quad \lambda \ll \mid \Rightarrow \mathrm{g} \gg 1$

Weak disorder physics

Weak disorder limit: $\quad \lambda \ll 1 \Rightarrow \mathrm{~g} \gg 1$

Probability of a crossing $(\propto 1 / g)$ is small: phase coherent corrections to the classical limit are small.

Weak disorder physics

Weak disorder limit: $\quad \lambda \ll 1 \Rightarrow \mathrm{~g} \gg 1$

Probability of a crossing $(\propto 1 / g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson) but it remains normalized.

Weak disorder physics

Weak disorder limit: $\quad \lambda \ll 1 \Rightarrow \mathrm{~g} \gg 1$

Probability of a crossing $(\propto 1 / g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson) but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized) coherent effects over large distances.

Weak disorder physics

Weak disorder limit: $\quad \lambda \ll 1 \Rightarrow g \gg 1$
Probability of a crossing $(\propto 1 / g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson) but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized) coherent effects over large distances.

Quantum crossings are independently distributed :
We can generate higher order corrections to the Diffuson as an expansion in powers of $1 / g$

In the presence of a dephasing mechanism that breaks time coherence, only trajectories with $t<\tau_{\phi}$ contribute.

In the presence of a dephasing mechanism that breaks time coherence, only trajectories with $t<\tau_{\phi}$ contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the Cooperon acquire opposite phases:

$\Longrightarrow \phi_{0} / 2$ periodicity of the Sharvin effect

In the presence of a dephasing mechanism that breaks time coherence, only trajectories with $t<\tau_{\phi}$ contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the Cooperon acquire opposite phases:

$P_{\text {int }}\left(r, r^{\prime}, t\right)$ is obtained from the covariant diffusion equation

$$
\left(\frac{1}{\tau_{\phi}}+\frac{\partial}{\partial t}-D\left[\nabla_{r^{\prime}}+i \frac{2 e}{\hbar} \mathbf{A}\left(r^{\prime}\right)\right]^{2}\right) P_{\text {int }}\left(r, r^{\prime}, t\right)=\delta\left(r-r^{\prime}\right) \delta(t)
$$

Weak localization- Electronic transport

To the classical probability corresponds the Drude conductance $G_{c l}$

Weak localization- Electronic transport

To the classical probability corresponds the Drude conductance $G_{c l}$

First correction ($\propto 1 / g$) involves one quantum crossing and the probability $p_{o}\left(\tau_{D}\right)$ to have a closed loop:

$$
\frac{\Delta G}{G_{c l}}=-p_{o}\left(\tau_{D}\right)
$$

$$
\tau_{D}=L^{2} / D
$$

Weak localization- Electronic transport

To the classical probability corresponds the Drude conductance $G_{c l}$

First correction ($\propto 1 / g$) involves one quantum crossing and the probability $p_{o}\left(\tau_{D}\right)$ to have a closed loop:

$$
\frac{\Delta G}{G_{c l}}=-p_{o}\left(\tau_{D}\right)
$$

$$
\tau_{D}=L^{2} / D
$$

$$
p_{o}\left(\tau_{D}\right)=\frac{1}{g} \int_{0}^{\tau_{D}} Z(t) \frac{d t}{\tau_{D}}
$$

quantum correction decreases the conductance: weak localization

Return probability $Z(t)=\int d r P_{i n t}(r, r, t)=\left(\frac{\tau_{D}}{4 \pi t}\right)^{d / 2}$

Quantum mesoscopic physics :

the global scattering approach

(Landauer-Schwinger)

An Intermezzo !

global vs. local

Aim of the intermezzo:

to present in general terms, a global (i.e. non local) approach to account for both the thermodynamic and the non equilibrium behavior of quantum complex systems

Elastic di ~der does not break phase coherence $\begin{array}{cc}\text { and } & A \\ \text { D reminder irreversibility } \\ \text { less and } \\ \end{array}$

All symmetries an are no good quantum numbers.

Elastic disorder does not break phase coherence and it does not introduce irreversibility
Disorder introduces randomness and
complexity:

All symmetries are lost, there are no good quantum numbers.

Exemple: speckle patterns in optics

Transmission of light through a
\longleftarrow disordered suspension: complex system

Aim of the intermezzo:

to present in general terms, a global (i.e. non local) approach to account for both the thermodynamic and the non equilibrium behavior of quantum complex systems

In complex systems (metals, dielectrics, ...), it is difficult to obtain local quantities and sometimes it is even impossible. But in many cases, it is also not necessary.

Aim of the intermezzo:

to present in general terms, a global (i.e. non local) approach to account for both the thermodynamic and the non equilibrium behavior of quantum complex systems

In complex systems (metals, dielectrics, ...), it is difficult to obtain local quantities and sometimes it is even impossible. But in many cases, it is also not necessary.

Use a global description : Landauer-Schwinger approach

Basics: Usually we start from local differential equations and try to solve them with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in terms of local Green's functions for the quantum coherent matter field (electrons)

Basics: Usually we start from local differential equations and try to solve them with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in terms of local Green's functions for the quantum coherent matter field (electrons)

$$
\sigma_{x x}(\omega)=s \frac{\hbar}{\pi \Omega} \operatorname{Tr}\left[\hat{j}_{x} \operatorname{Im} \hat{G}_{\epsilon F}^{R} \hat{j}_{x} \operatorname{Im} \hat{G}_{\epsilon F-\omega}^{R}\right]
$$

$$
\sigma_{\alpha \beta}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-s \frac{e^{2} \hbar^{3}}{2 \pi m^{2}}\left[\partial_{\alpha} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)-\operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\alpha} \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)\right]
$$

This approach is often doomed to failure due to either :

This approach is often doomed to failure due to either :

I. local divergences of the Green's functions close to a boundary

Boundary effects in quantum field theory

D. Deutsch and P. Candelas
Center for Theoretical Physics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712

(Received 15 September 1978)
Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the "renormalized mode sum energy," a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary.

This approach is often doomed to failure due to either :

I. local divergences of the Green's functions close to a boundary

Boundary effects in quantum field theory

D. Deutsch and P. Candelas
Center for Theoretical Physics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712

(Received 15 September 1978)
Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the "renormalized mode sum energy," a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary.
2. average over existing intrinsic disorder : no analytic known solution of the Anderson problem either for weak or strong disorder.
3. It can be also because we simply do not have local differential eqs., e.g. on fractals

3. It can be also because we simply do not have local differential eqs., e.g. on fractals

4. Or because the physical quantity we wish to calculate does not have a local description : for instance there exists a local wave eq. but we do not have a (local) Kubo formula for the diffusion coefficient.

Transport in a metal : Landauer approach

I. Electric transport:

Local Kubo formulation for the electric current:

where $\sigma\left(x, x^{\prime}\right)$ is the local conductivity (response) expressed in terms of local solutions (Green's functions).

Transport in a metal : Landauer approach

I. Electric transport:

Local Kubo formulation for the electric current:

where $\sigma\left(x, x^{\prime}\right)$ is the local conductivity (response) expressed in terms of local solutions (Green's functions).
The Landauer formula proposes an equivalent global description based on scattering data.

Transport in a metal : Landauer approach

I. Electric transport:

Local Kubo formulation for the electric current:

where $\sigma\left(x, x^{\prime}\right)$ is the local conductivity (response) expressed in terms of local solutions (Green's functions).
The Landauer formula proposes an equivalent global description based on scattering data.

2. Waves through complex disordered/chaotic media:
for instance there exists a local wave eq. but we do not have a (local) Kubo formula for the diffusion coefficient.

But there is a well defined Landauer description based on the Scattering matrix-Transmission coefficient, etc.

(a)

(b)

(c)

(d)

Spectral properties-Thermodynamics : Krein-Schwinger formula

Waves in free space : Density of states $\rho_{0}(\omega)$ per unit volume.

Spectral properties-Thermodynamics : Krein-Schwinger formula

Waves in free space : Density of states $\rho_{0}(\omega)$ per unit volume.
Scatterer:

Spectral properties-Thermodynamics : Krein-Schwinger formula

Waves in free space : Density of states $\rho_{0}(\omega)$ per unit volume.
Scatterer:

The \underline{S}-matrix accounts for all relevant changes : e.g. DOS $\rho(\omega)$ of the waves in the presence of the scatterer is:

$$
\rho(\omega)-\rho_{0}(\omega)=-\frac{1}{\pi} \Im m \frac{d}{d \omega} \ln \operatorname{Det} S(\omega) \quad \text { Krein formula }
$$

Spectral properties-Thermodynamics : Krein-Schwinger formula

Waves in free space : Density of states $\rho_{0}(\omega)$ per unit volume.
Scatterer:

The \underline{S}-matrix accounts for all relevant changes : e.g. DOS $\rho(\omega)$ of the waves in the presence of the scatterer is:

$$
\rho(\omega)-\rho_{0}(\omega)=-\frac{1}{\pi} \Im m \frac{d}{d \omega} \ln \operatorname{Det} S(\omega) \quad \text { Krein formula }
$$

Thermodynamic changes can be deduced from this formula:
Variation of the partition function (Dashen,Ma,Bernstein):

$$
\operatorname{Tr} e^{-\beta H}-\operatorname{Tr} e^{-\beta H_{0}}=-\frac{1}{\pi} \int d \omega e^{-\beta \omega} \Im m \frac{d}{d \omega} \ln \operatorname{Det} S(\omega) \quad H=H_{0}+V
$$

Thermodynamics : persistent current in a mesoscopic ring submitted to a Aharonov-Bohm flux

$$
\phi_{0} \equiv \frac{h}{e}
$$

Thermodynamics : persistent current in a mesoscopic ring submitted to a Aharonov-Bohm flux

$$
\phi_{0} \equiv \frac{h}{e}
$$

Energy spectrum of an electron in a Aharonov-Bohm magnetic flux

$$
\epsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}(n-\varphi)^{2}
$$

Easy!

Thermodynamics : persistent current in a mesoscopic ring submitted to a Aharonov-Bohm flux

$$
\phi_{0} \equiv \frac{h}{e}
$$

Disordered metal

Less easy!

Thermodynamics : persistent current in a mesoscopic ring submitted to a Aharonov-Bohm flux

Thermodynamics : persistent current in a mesoscopic ring submitted to a Aharonov-Bohm flux

$$
I(\phi)=\frac{1}{2 i \pi} \int d E \frac{\partial}{\partial \phi} \ln \operatorname{Det} S(E, \phi)
$$

Thermodynamics : persistent current in a mesoscopic ring submitted to a Aharonov-Bohm flux

$$
I(\phi)=\frac{1}{2 i \pi} \int d E \frac{\partial}{\partial \phi} \ln \operatorname{Det} S(E, \phi)
$$

Electrical conductance G (out of equilibrium)

$$
G=\frac{2 e^{2}}{\pi \hbar}\left(\Im m \frac{\partial}{\partial \phi} \ln \operatorname{Det} S\left(E_{F}, \phi(0)\right)\right)^{2}
$$

Equivalent to the Landauer formula.

From Kubo to Landauer

$j(x)=\int d x^{\prime} \sigma\left(x, x^{\prime}\right) E\left(x^{\prime}\right) \Rightarrow j(x)=\sigma E(x)$

From Kubo to Landauer

$\sigma_{\alpha \beta}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-s \frac{e^{2} \hbar^{3}}{2 \pi m^{2}}\left[\partial_{\alpha} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)-\operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\alpha} \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)\right]$

From Kubo to Landauer

$\sigma_{\alpha \beta}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-s \frac{e^{2} \hbar^{3}}{2 \pi m^{2}}\left[\partial_{\alpha} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)-\operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\alpha} \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)\right]$

Add leads!

From Kubo to Landauer

$j(x)=\int d x^{\prime} \sigma\left(x, x^{\prime}\right) E\left(x^{\prime}\right) \Rightarrow j(x)=\sigma E(x)$

$\sigma_{\alpha \beta}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=-s \frac{e^{2} \hbar^{3}}{2 \pi m^{2}}\left[\partial_{\alpha} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)-\operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \partial_{\alpha} \partial_{\beta}^{\prime} \operatorname{Im} G_{\epsilon}^{R}\left(\boldsymbol{r}^{\prime}, \boldsymbol{r}\right)\right]$

From Kubo to Landauer

$j(x)=\int d x^{\prime} \sigma\left(x, x^{\prime}\right) E\left(x^{\prime}\right) \Rightarrow j(x)=\sigma E(x)$

$$
T_{a b}=\left|t_{a b}\right|^{2}
$$

(a)

(b)

(c)

(d)

LANDAUER FORMULA

$$
G=\frac{e^{2}}{h} \operatorname{Tr} t t^{\dagger}
$$

QUANTUM CONDUCTANCE AND SHOT NOISE

Slab geometry - two-terminal conductors

$$
T_{a b}=\left|t_{a b}\right|^{2}
$$

(a)

(b)

LANDAUER FORMULA

$$
G=\frac{e^{2}}{h} \operatorname{Tr} t t^{\dagger}
$$

Noise power is defined as the symmetric current-current correlation function

$$
S(\omega, V)=\int d t e^{i \omega t}\langle\delta \hat{I}(t) \delta \hat{I}(0)+\delta \hat{I}(0) \delta \hat{I}(t)\rangle
$$

where $\delta \hat{I}(t)=\hat{I}(t)-\langle I\rangle$ are electronic current operators

Equilibrium noise ($V=0$)

$$
S(\omega, 0)=2 G \omega \operatorname{coth}\left(\frac{\omega}{2 T}\right)
$$

(Nyquist fluctuation-dissipation)

Non-equilibrium noise $V \neq 0$ at $T=0$

$S(0, V)-S(0,0)=\frac{e^{2}}{h}|2 e V| \operatorname{Tr} t t^{\dagger}\left(1-t t^{\dagger}\right)$

Excess noise measures the second cumulant of charge fluctuations :

$$
S(0, V)-S(0,0) \propto\left\langle Q_{t}^{2}\right\rangle-\left\langle Q_{t}\right\rangle^{2}
$$

THE FANO FACTOR

(a)

$$
F=\frac{S(0, V)-S(0,0)}{e I}=\frac{\sum_{a b} T_{a b}\left(1-T_{a b}\right)}{\sum_{a b} T_{a b}}
$$

$T_{a b}$ IS THE TRANSMISSION COEFFICIENT ALONG THE CHANNEL $a b$

F TAKES A UNIVERSAL VALUE $1 / 3$ FOR WEAKLY DISORDERED "ONE-DIMENSIONAL" METALS

To end this intermezzo :

Well known examples (Landauer-Schwinger approach).

To end this intermezzo :

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like the S-matrix.

Physically relevant quantities of a system are expressed in terms of in-out signals, including correlations.

To end this intermezzo :

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like the S-matrix.

Physically relevant quantities of a system are expressed in terms of in-out signals, including correlations.

This idea has been successfully used in Quantum mesoscopic physics, quantum optics, quantum field theory,...

To end this intermezzo :

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like the S-matrix.

Physically relevant quantities of a system are expressed in terms of in-out signals, including correlations.

This idea has been successfully used in Quantum mesoscopic physics, quantum optics, quantum field theory,...

It is relatively new and promising in other fields:
1.Shannon information theory- MIMO (Multiple input-Multiple output)
2.Full counting statistics and shot noise (quantum mesoscopic physics)
3. Out of equilibrium quantum systems- Wigner time delay
4.Casimir effects
5.Non-perturbative effects (Unruh effects, Hawking radiation, Schwinger pair production,...) 6. Waves and quantum mechanics on fractal structures.

Energy spectrum - Thermodynamics - Transport?

Energy spectrum - Thermodynamics - Transport?

Energy spectrum - Thermodynamics - Transport?

and calculate the S-matrix : possible

How to connect the 2 previous approaches:

* Local quantum crossings
* Global Landauer scattering formalism

Beyond the conductance

Fluctuations and correlations

transmission coefficient

(a)

(b)

$$
T_{a b}=\left|t_{a b}\right|^{2}
$$

(c)

(d)
e product es with or ings
ion of the transmission coefficient :

$$
C_{a b a^{\prime} b^{\prime}}=\frac{\overline{\delta T_{a b} \delta T_{a^{\prime} b^{\prime}}}}{\bar{T}_{a b} \bar{T}_{a^{\prime} b^{\prime}}}
$$

Slab geometry

Fluctuations and correlations

transmission coefficient

(a)

$$
T_{a b}=\left|t_{a b}\right|^{2}
$$

correlations involve the product of 4 complex amplitudes with or without quantum crossings

Correlation function of the transmission coefficient :

$$
C_{a b a^{\prime} b^{\prime}}=\frac{\overline{\delta T_{a b} \delta T_{a^{\prime} b^{\prime}}}}{\bar{T}_{a b} \bar{T}_{a^{\prime} b^{\prime}}}
$$

Slab geometry

Fluctuations and correlations

transmission coefficient

$$
T_{a b}=\left|t_{a b}\right|^{2}
$$

correlations involve the product of 4 complex amplitudes with or without quantum crossings

Correlation function of the transmission coefficient :

$$
C_{a b a^{\prime} b^{\prime}}=\frac{\overline{\delta T_{a b} \delta T_{a^{\prime} b^{\prime}}}}{\bar{T}_{a b} \bar{T}_{a^{\prime} b^{\prime}}}
$$

Slab geometry

A direct consequence: quantum corrections to electrical transport
$\mathrm{Cla} N_{\text {Ot }}$ that $_{\text {sim }} \cdot \tau_{n l}=g \times \frac{e^{2}}{h}$ with $g \gg 1$ numbers... Need to simple wish

Quantum cortes

$$
\begin{array}{r}
\text { sum up } F_{\mathrm{e} y n_{m}}^{\text {to ob tan }} \begin{array}{l}
\text { precise } \\
\text { programs. }
\end{array} \\
.
\end{array}
$$

so that $\Delta G=\# \frac{e^{2}}{h}$ is universal

THE FANO FACTOR

(a)

$$
F=\frac{S(0, V)-S(0,0)}{e I}=\frac{\sum_{a b} T_{a b}\left(1-T_{a b}\right)}{\sum_{a b} T_{a b}}
$$

F TAKES A UNIVERSAL VALUE $1 / 3$ FOR WEAKLY DISORDERED "ONE-DIMENSIONAL" METALS

Summary ... and closed loops :

Weak localization corrections to the electrical conductance

$$
\frac{\Delta G}{G_{c l}} \propto-\frac{1}{g} \int_{0}^{\tau_{D}} Z(t) \frac{d t}{\tau_{D}}
$$

$$
Z(t)=\int d r P_{c l}(r, r, t)=\left(\frac{\tau_{D}}{4 \pi t}\right)^{d / 2}
$$

Summary ... and closed loops :

Weak localization corrections to the electrical conductance

$$
\frac{\Delta G}{G_{c l}} \propto-\frac{1}{g} \int_{0}^{\tau_{D}} Z(t) \frac{d t}{\tau_{D}}
$$

Conductance fluctuations

$$
Z(t)=\int d r P_{c l}(r, r, t)=\left(\frac{\tau_{D}}{4 \pi t}\right)^{d / 2}
$$

An exercise

Dephasing and decoherence

Universal conductance fluctuations

Dephasing and decoherence

Universal conductance fluctuations

There are 4 diagrams: 2 involve diffusons and 2 cooperons.

How to differentiate them?

Dephasing and decoherence

Universal conductance fluctuations

There are 4 diagrams : 2 involve diffusons and 2 cooperons.

How to differentiate them?
sensitive to an applied Aharonov-Bohm magnetic flux

Dephasing and decoherence

Universal conductance fluctuations

46 Si-doped GaAs samples at 45 mK

(Mailly-Sanquer)
We expect the conductance fluctuations to be reduced by a factor 2

vanishing of the weak localization correction for the same magnetic field

In the presence of incoherent processes $L>L_{\phi}$:

$$
\overline{\delta G^{2}} \rightarrow 0
$$

Beyond weak disorder - a glimpse of Anderson localization phase transition

Weak disorder physics

Weak disorder limit: $\quad \lambda \ll 1 \Rightarrow g \gg 1$
Probability of a crossing $(\propto 1 / g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson) but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized) coherent effects over large distances.

Quantum crossings are independently distributed :
We can generate higher order corrections to the Diffuson as an expansion in powers of $1 / g$

A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings $1 / g$ allows to calculate quantum corrections to physical quantities.

A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings $1 / g$ allows to calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization) and becomes size dependent :

$$
D(L)=D\left(1-\frac{1}{\pi g} \ln (L / l)+\left(\frac{1}{\pi g} \ln (L / /)\right)^{2}+\ldots .\right) \quad(d=2)
$$

This singular perturbation expansion is not a simple coincidence but an expression of scaling

A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings $1 / g$ allows to calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization) and becomes size dependent :

$$
D(L)=D\left(1-\frac{1}{\pi g} \ln (L / l)+\left(\frac{1}{\pi g} \ln (L / L)\right)^{2}+\ldots\right) \quad(d=2)
$$

This singular perturbation expansion is not a simple coincidence but an expression of scaling

A renormalization of $D(L)$ changes also $g(L)$:

$$
g(L)=\frac{D(L)}{c \lambda^{d-1}} L^{d-2}
$$

Scaling and its meaning : (P.W. Anderson et al.,1979)

If we know $g(L)$, we know it at any scale :

Scaling and its meaning : (P.W. Anderson et al.,1979)
If we know $g(L)$, we know it at any scale :

$$
g(L(1+\varepsilon))=f(g(L), \varepsilon)
$$

Scaling and its meaning :

(P.W. Anderson et al.,1979)

If we know $g(L)$, we know it at any scale :

$$
g(L(1+\varepsilon))=f(g(L), \varepsilon)
$$

Expanding, we have $g(L(1+\epsilon))=g(L)\left(1+\epsilon \beta(g)+O\left(g^{-5}\right)\right)$
with $\quad \beta(g)=\frac{d \ln g}{d \ln L} \quad$ (Gell-Mann-Low function)

Scaling and its meaning :

 (P.W. Anderson et al.,1979)If we know $g(L)$, we know it at any scale :

$$
g(L(1+\varepsilon))=f(g(L), \varepsilon)
$$

Expanding, we have $g(L(1+\epsilon))=g(L)\left(1+\epsilon \beta(g)+O\left(g^{-5}\right)\right)$
with $\beta(g)=\frac{d \ln g}{d \ln L}$
(Gell-Mann - Low function)

Scaling behavior :

$$
g(L, W)=f(L / \xi(W))
$$

$\xi(W)$ is the localization length

Numerical calculations on the (universal) Anderson Hamiltonian

$$
d=2 \quad d=3
$$

Anderson phase transition
B.Kramer, A. McKinnon, I98I

FIG, 1. Scaling function λ_{m} / M vs λ_{m} / M for the localization length λ_{μ} of a system of thickness M for (a) $d=2$ (M $34)$ and (b) $d=3(M \geqslant 3)$. Insets show the scaling parameter λ_{∞} as a function of the disorder W.

Anderson localization phase transition occurs in $d>2$
It has been observed experimentally with electromagnetic waves (Aegarter, Maret et al., 2006)

