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Quantum mesoscopic physics  : 
Fractals and quasi-periodic structures

Part 3
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Fractals define a very useful 
testing ground for dimensionality 
dependent physical problems since 

distinct physical properties are 
characterized by different (usually 

non integer) dimensions.

Fractals or the skill of playing with 
dimensionality  

Why studying fractals 
in physics ?
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Some examples

Anderson localization phase transition : exists 
for 

Bose-Einstein condensation (          )

Mermin-Wagner theorem (Superfluidity           )

Levy flights-Percolation (quantum and classical)

Recurrence properties of random walks

Quantum mesoscopic physics

Quantum and classical phase transitions-
Existence of topological defects...

Thursday, September 19, 13



Fractals are also interesting from a 
practical point of view (in addition to 

providing nice pictures...)

Random lasers : pumping on 
randomly localized modes 
(difficult to locate them).
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!

! !!!!

! !!!
!!

Sierpinski  gasket

Diamond 
fractals

Sierpinski 
carpet

Iterative fractal graph structure
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As opposed to Euclidean spaces characterized 
by translation symmetry, fractals possess a 

dilatation symmetry of their physical properties, 
each characterized by a specific fractal 

dimension.

Thursday, September 19, 13



At each step      of the iteration, a fractal is characterized by its 
total length      and a number of sites     .
Scaling of these dimensionless quantities allows to define fractal 
dimensions.

On a Sierpinski gasket

so that 

Example: Spatial Hausdorff dimension

 ~1.585
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Consider on an Euclidean manifold, the mean square displacement 

while on a fractal,

where      is the anomalous walk dimension. 

Another fractal dimension distinct from 

Classical diffusion 
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Quantum mesoscopic physics on 
Fractals :
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Quantum mesoscopic physics on 
Fractals :

Could repeat all we did before but on a fractal...

Thursday, September 19, 13



Weak localization corrections to the 

electrical conductance

Z(t)= dr Pcl (r,r,t)=∫
τD

4πt
⎛
⎝⎜

⎞
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d /2

Conductance fluctuations

Summary ... and closed loops :
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But with Z(t) calculated on a fractal
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Quantum mesoscopic physics on 
Fractals :

Instead we consider another different problem... 
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Quantum mesoscopic physics on 
Fractals :

Instead we consider another different problem... 

Spontaneous emission - 
Energy spectra and dynamics

on fractals
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Spontaneous emission from a 
fractal QED spectrum

Quantum 
vacuum
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A large variety of problems are conveniently 
described in terms of spectral classes                                                                                                    

( absolutely continuous / singular-continuous / point spectrum):

  Anderson localization
  Quantum and classical wave diffusion
  Random magnetism
  …
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A large variety of problems are conveniently 
described in terms of spectral classes                                                                                                    

( absolutely continuous / singular-continuous / point spectrum):

  Anderson localization
  Quantum and classical wave diffusion
  Random magnetism
  …

What about a fractal QED vacuum 

and spontaneous emission ?
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Spontaneous emission for different QED vacua

atom
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smooth continuum           Wigner-Weisskopf decay

Spontaneous emission for different QED vacua

atom
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smooth continuum           Wigner-Weisskopf decay

Spontaneous emission for different QED vacua

atom

quasi-discrete mode           vacuum Rabi oscillations
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smooth continuum           Wigner-Weisskopf decay

Spontaneous emission for different QED vacua

atom

quasi-discrete mode           vacuum Rabi oscillations

structured continuum          non-exp./incomplete decay        
(photonic crystals, Yablonovitch ’87, Kofman et.al., John et.al. ‘94)
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smooth continuum           Wigner-Weisskopf decay

Spontaneous emission for different QED vacua

atom

quasi-discrete mode           vacuum Rabi oscillations

structured continuum          non-exp./incomplete decay        
(photonic crystals, Yablonovitch ’87, Kofman et.al., John et.al. ‘94)

fractal spectrum
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Fractal spectrum : what is it ?
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Fractal    ↔    Self-similar
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Fractal    ↔    Self-similar
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Fractal    ↔    Self-similar

Discrete scaling symmetry
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Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (nA,nB) 

(Kohmoto et. al., ’87)
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The density of modes ρ(ω) : 
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The density of modes ρ(ω) : 

Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (nA,nB) 

Fibonacci sequence:

  A→AB→ABA→ABAAB→ABAABABA→…

Discrete scaling symmetry

(Kohmoto et. al., ’87)
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The notion of Fibonacci structure is of 
broad interest in various fields...

26
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Courtesy of Gerald Dunne for today’s talk 
(from Adelaide, Australia)
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Discrete scaling symmetry: formal description
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Discrete scaling symmetry: formal description

Counting function: =  (# of states in [ω, ω+Δω])

Δω
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Discrete scaling symmetry: formal description

Counting function: =  (# of states in [ω, ω+Δω])

Δω

Discrete scaling 

symmetry
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Testing the discrete scaling symmetry

Scaling equation
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Testing the discrete scaling symmetry

Scaling equation

has the following general solution (dimensionless ω): 

-  fractal exponent (absolutely continuous :    , pure-point :           ) 
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Testing the discrete scaling symmetry

Scaling equation

(Ghez and Vaienti, ’89: the wavelet  transform of fractal measures) 

has the following general solution (dimensionless ω): 

Similarly for the convolution of ρ(ω)  with a window function

-  fractal exponent (absolutely continuous :    , pure-point :           ) 
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack

numerics
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack

numerics

(Kohmoto et. al., ’87)
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Spontaneous emission and vacuum fractality
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Spontaneous emission and vacuum fractality
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Spontaneous emission and vacuum fractality

Differential decay rate 

(at small times)
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Two-level atom coupled to a continuum of states
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Two-level atom coupled to a continuum of states

We solve the time-dependent problem:
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Two-level atom coupled to a continuum of states

We solve the time-dependent problem:

density of photonic modes
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Two-level atom coupled to a continuum of states

We solve the time-dependent problem:

-  the excited state probability   

density of photonic modes
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Short time limit – the Fermi golden rule 

revisited
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Short-time limit

For short times, such that

the excited state probability is                                                           ,

A standard perturbative treatment:
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the excited state probability is                                                           ,

where the differential decay rate          is given by the 
well known expression:
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the excited state probability is                                                           ,
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well known expression:
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Fermi golden rule
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Valid for smooth spectrum + long times

Fermi golden rule
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Valid for smooth spectrum + long times

Fermi golden rule

This      coincides with the exponential decay rate (Wigner-Weisskopf):
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Short time limit - fractal spectrum
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Short time limit - fractal spectrum
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Short time limit - fractal spectrum

Recall that the counting function satisfies
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Short time limit - fractal spectrum

Recall that the counting function satisfies
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Short time limit - fractal spectrum

Recall that the counting function satisfies

where

We immediately conclude that the general form of            is:

-   fractal exponent and scaling factor of the spectrum

-   time scales, specific to the considered problem.
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Beyond the short time 
regime-

Strong coupling and
Inhibition of spontaneous 

emission
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A toy model
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Experimental study of a fractal energy spectrum :

Coherent polaritons gas in a Fibonacci quasi-periodic 
potential

D. Tanese, J. Bloch, E. Gurevich, E.A. 2013.
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The Fibonacci problem has a long and rich 
(theoretical and experimental) history.

(Kohmoto,Luck, Gellerman, Damanik, Bellissard,Simon,...)

Our purpose here is to propose a quantitative 
description of fractal properties in order to use 
fractals/singular continuous systems as useful 

simulating tools
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(193 letters) 

Number of letters of a sequence      is the Fibonacci 
number       so that   
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Fibonacci sequence:

  A→AB→ABA→ABAAB→ABAABABA→…

(193 letters) 

Number of letters of a sequence      is the Fibonacci 
number       so that   
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Measure of spectral function           intensity maps
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Measure of spectral function           intensity maps

Quantitative description !
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Effective 1D model 

where          
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Effective 1D model 

where          

Shape of each letter
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Effective 1D model 

where          

Shape of each letter

is the inverse golden mean
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Effective 1D model 

where          

Shape of each letter

is the inverse golden mean

No fitting parameter except for the smoothness of 
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Spectral function           intensity maps (Numerics)
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Spectral function           intensity maps (Experimental)
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Comparison
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Comparison
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Labeling the gaps...

53
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Labeling the gaps...

54

Calculating the integrated density of states (IDOS) 
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where          

Shape of each letter

is the inverse golden mean

Integrated density of states (IDOS)-Gap labeling
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Each pair         of integers defines a unique Bragg 
peak (    is irrational).  

Bragg peaks are dense (Cantor set)          Must use 
periodic approximants, i.e.replacing irrational    by

Periodic crystal of length           and potential    

Bragg peaks at values 
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Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each 
value of the (independent) Bragg peaks (Bloch thm.).

To first order in V, each Bragg peak hybridizes 
degenerate Bloch waves         and a gap opens at  
energies 

               
 The (normalized) IDOS inside a gap labeled by          is           
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Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each 
value of the (independent) Bragg peaks (Bloch thm.).

To first order in V, each Bragg peak hybridizes 
degenerate Bloch waves         and a gap opens at  
energies 

               
 The (normalized) IDOS inside a gap labeled by          is           

N(E) = p + qσ (mod.1)
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Integrated Density of States-Gap Labeling
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Integrated Density of States-Gap Labeling
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Spatial distribution - Localization of modes

Thursday, September 19, 13



Summary-Further directions

• Coupling of a quantum emitter to a fractal quasi-continuum 
leads to an unusual decay dynamics.

• The decay exhibits scaling properties related to the discrete 
scaling symmetry of the quasi-continuum.

• In the short time limit, this decay was demonstrated in 
general and for an idealized Fibonacci cavity.

• An exactly solvable toy model suggests that a similar scaling 
takes place also for long times.

• The experimental study of a macroscopic coherent polariton 
gas in a Fibonacci cavity allows for a quantitative study of a 
fractal singular continuous energy spectrum : spectral 
function, wave functions and gap labeling. 
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Further directions

• Long time dynamics of wave packets with a quasi-
continuum fractal spectrum. Log-periodic oscillations.

• Study of the emission lineshape.

• Different experimental realizations : tunnel junction 
and/or squbit in a microwave fractal resonator (J. 
Gabelli, Orsay) : Notion of photons- statistics-zero point 
motion with fractal spectra.

• Generalization to other quantum field theory : BEC and 
superfluidity (massive bosons) - Quantum gravity 
(barycentric fractals). 
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Further directions

• Generalization to other quantum fields : BEC, 
superfluidity and Off diagonal long range order 
(ODLRO) for massive bosons. 
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