Signatures expérimentales des interactions électroniques dans le transport mésoscopique

Introduction : ordres de grandeur, rappels transport cohérent

Interactions et cohérence de phase

Désordre, dimensionnalité, environnement électromagnétique, géométrie Comment déterminer le temps de cohérence de phase dans un système fini

Interactions et propriétés thermodynamiques

Correction à la densité d'états d'un système diffusif ; rôle de la dimensionalité Système localisé : gap de Coulomb Magnétisme orbital

Transport hors d'équilibre Rectification mésocopique et interactions

Que se passe t'il à la limite 1D?

- Instabilité du liquide de Fermi,
- Exemple fils quantiques et nanotubes de carbone
- Peut on parler de comportement liquide de Luttinger dans les conducteurs 1D
- Blocage de Coulomb dynamique et environnement électromagnétique

Interactions dans les boîtes quantiques

- Du blocage de Coulomb à l'effet Kondo
- Contacts supraconducteurs : compétition entre effet Kondo et effet Josephson

Rappels : Interférences quantiques conductance et désordre

Régime mésoscopique $L < L_{\phi}$

De l'atome au solide macroscopique...

Conductance de Landauer

 $G = (e^2/h)$ tr t t⁺ Matrice MxM des amplitudes de transmission t_{ab} onde plane k_a vers onde plane k_b

Nombre de canaux de conduction d'un conducteur de section S : $M = S / \lambda_F^2$ Nb de vecteurs d'onde transverse Conductivité de Kubo et fonctions de Green

Formule de Kubo : réponse linéaire à un champ ac niveaux discrets largeur γ_{ND}

$$\omega G = -\sum_{n,m\neq n} |J_{nm}|^2 \frac{f_n - f_m}{\epsilon_n - \epsilon_m} \frac{\gamma_{ND}}{(\epsilon_n - \epsilon_m - \hbar\omega)^2 + \gamma_{ND}^2}$$

Spectre continu T=0

$$\sigma(\omega) = s \frac{\hbar}{\pi V} Tr[j_x \delta(\epsilon - H) j_x \delta(\epsilon - \omega - H)]$$

$$G^{R,A}_{\epsilon} = (\epsilon - H \pm i0)^{-1}$$

Fonctions de Green avancées et retardées

 ${\rm Densit\acute{e}}~{\rm d}'\acute{\rm e}{\rm tats}~~\delta(\epsilon-H) = Im(G^R_\epsilon)/2\pi = (G^R_\epsilon-G^A_\epsilon)/2\pi$

$$\sigma(\omega) = s \frac{\hbar}{\pi V} Tr \left[j_x G^R_{\epsilon} j_x G^A_{\epsilon-\omega} \right]$$

Formules de landauer et de Kubo ω =0 équivalentes dans la limite d'un système à spectre continu

Conductance et interférences quantiques

Fonctions de Green dans l'espace réel:

$$\langle \sigma \rangle = -\frac{se^2\hbar^3}{2\pi m^2 V} \int \int d\mathbf{r} d\mathbf{r} \langle \partial_x G^R_\epsilon(\mathbf{r},\mathbf{r}') \partial_{x'} G^A_\epsilon(\mathbf{r}',\mathbf{r}) \rangle$$

Très fortement reliée à:

$$P(r, r') = \sum_{C, C'} A_{C}(r, r') A_{C'}^{*}(r, r')$$

$$G^{R} \quad G^{A}$$

$$P_{ij} = \sum_{C_{1}C_{2}} |A(C_{1})| |A(C_{2})| e^{i[\varphi(C_{1}) - \varphi(C_{2})]} \quad i \qquad C \quad C'$$

Magnétoconductance mésoscopique

« Empreinte digitale magnétique »

Caractéristique d'une configuration particulière des impuretés

En présence d'un champ magnétique:

$$\delta\phi(\mathbf{C}_1)$$
 - $\delta\phi(\mathbf{C}_2) = 2\pi \Phi_{C1C2} / \Phi_0$

Empreintes digitales magnétiques mésoscopiques

Courbes reproductibles de magnétoconductance d'un échantillon mésoscopique pour différentes réalisations de désordre (obtenues en appliquant un pulse de courant sur l'échantillon)

Moyennage des fluctuations de conductance

Corrections quantiques à la conductivité d'un système macroscopique $L >> L_{\Phi}$

$$ω$$
~O reliées à celles de: $P(r,r') = \sum_{C,C'} A_C(r,r') A^*_{C'}(r,r')$
 $A_C \sim e^{ik_F l(C)}$
moyennée sur le désordre

Propriétés et intérêt de P(r,r')

 $P\left(r,r'
ight)$ est solution d'une équation de diffusion

$$\left(\frac{\partial}{\partial t} - D\Delta\right) P_{\Box}(r, r', t) = \delta(r - r')\delta(t)$$

$$\left(-i\omega + Dq^2\right)P_{\Box}(q,\omega) = 1$$

Permet de calculer les produits: <GRGA>

 $G_{\epsilon}^{R,A} = (\epsilon - H \pm i0)^{-1}$

Espace libre à d dimensions			
$P_{-}(R,t) = \frac{1}{(4\pi Dt)^{d/2}} e^{-\frac{R}{4L}}$	$\frac{2}{Dt}$		

$$\delta(\epsilon - H) = Im(G_{\epsilon}^R)/2\pi = (G_{\epsilon}^R - G_{\epsilon}^A)/2\pi$$

Intervient dans les calculs de la réponse électronique à toute perturbation: Champ électrique: conductivité, polarisabilité Champ magnétique: magnétisme orbital (courants permanents) Interactions électron-électron: densité d'états temps de cohérence de phase

La Localisation faible

 $P_c(t)$ = distribution de boucles de temps t = probabilité de retour

$$P_{c}(t) = \int P_{int}(r,r,t)d^{d}r = L^{d}/(Dt)^{d/2}$$

G.Montambaux cours X2010

Correction de localisatisation faible

 $L \gg L_{\phi}$

Effet de la dimension d'espace

$$\Delta G = -4 \frac{e^2}{h} \int_0^\infty P_c(t) \left(e^{-t/\tau_{\phi}} - e^{-t/\tau_e} \right) \frac{dt}{\tau_D}$$

Limite macroscopique

$$au_D \gg au_\phi \qquad P(t) = \left(\frac{\tau_D}{4\pi t}\right)^{d/2}$$

τ_{A}	$\sqrt{ au_{\phi}} - \sqrt{ au_{e}}$	<i>d</i> =1	(quasi –1D)
$\int_{-\infty}^{\infty} \frac{dt}{t^{d/2}}$	$\longleftrightarrow \ln \frac{\tau_{\phi}}{\tau_{e}}$	<i>d</i> = 2	
^L e	$-\frac{1}{\sqrt{\tau_{\phi}}} + \frac{1}{\sqrt{\tau_{e}}}$	<i>d</i> = 3	$L_{\phi} = \sqrt{D\tau_{\phi}}$

G.Montambaux cours X2010

Effet de la dimension d'espace

 $L_{\Phi}(T) \propto T^{-p(d)}$

$$\Delta G = -\frac{2e^2}{h} \frac{L_{\phi}(T)}{L} \qquad d = 1 \quad (quasi - 1D)$$

$$\Delta G = -\frac{2e^2}{\pi h} \ln \frac{L_{\phi}(T)}{l_e} \qquad d = 2 \qquad \begin{array}{c} \text{Correct} \\ \text{la problem} \end{array}$$

$$\Delta G = -\frac{e^2}{\pi h} \frac{L}{l_e} \qquad d = 3 \qquad \begin{array}{c} \text{Correct} \\ \text{Correct} \end{array}$$

Correction plus importante à basse d, car la probabilité de retour est augmentée

Correction reste finie à basse T!

Cohérence de phase et champ magnétique

Cooperon: des trajectoires appariées traversées par un flux magnétique acquièrent des phases opposées

→ différence de phase
$$4\pi \frac{\phi}{\phi_0}$$
 → oscillations de période $\frac{\phi_0}{2} = \frac{h}{2e}$

Sous champ, déphasage entre trajectoires conjuguées par R.T. → le cooperon oscille avec le flux (cf. oscillations Sharvin-Sharvin)

$$P_{\rm int}(t) = P_{cl}(t) \ e^{4i\pi\frac{\phi}{\phi_0}}$$

Oscillations de résistance en champ magnétique dans des structures annulaires

Oscillations de résistance dans un cylindre de circonférence $2\pi R < L_{\Phi}$ et de longueur $L < L_{\Phi}$

Effet d'un champ magnétique (qualitatif)

$$P_{c}(t) = P_{cl}(t)e^{-t/\tau_{\phi}} \left\langle e^{4i\pi \frac{\phi(t)}{\phi_{0}}} \right\rangle$$

Toutes les trajectoires n'entourent pas le même flux

Flux typique enserré par une trajectoire diffusive à 2D et 3D

$$BD\tau_B = \phi_0$$

$$\Delta G = -4 \frac{e^2}{h} \int_0^\infty \left(\frac{\tau_D}{4\pi t}\right)^{d/2} e^{-t/\tau_\phi} e^{-t/\tau_B} \frac{dt}{\tau_D}$$

L'analyse de $\Delta G(B,T) = \Delta G(1/\tau_{\Phi}(T)+1/\tau_{B})$ Permet de déterminer $\tau_{\Phi}(T)$

Localisation faible dans un système tridimensionnel

Localisation faible dans un système bidimensionnel

Effet d'un champ magnétique

Fil quasi 1D, $W < L_{\Phi}$

$$\Delta G(B) = \Delta G(1/\tau_{\Phi} + 1/\tau_{B})$$

 $< \exp 4\pi i \phi(t)/\Phi_0 > = \exp -1/2 < (4\pi \phi(t)/\Phi_0)^2 >$

 $\langle \phi^2(t) \rangle = B^2 D t W^2$

 $1/\tau_B = 8D(\pi BW/\Phi_0)^2$

 $\Delta G(B) = - [1/\tau_{\phi}(T) + 8D (\pi BW/\Phi_0)^2]^{-1/2}$

Localisation faible dans un système guasiunidimensionnel

Fils de Lithium de différentes largeur W < L_{ϕ}

 $\frac{\Delta R(T,H)}{R_0} = \frac{e^2}{\pi \hbar} \frac{R_{\Box}}{W} \tilde{L}(T,H)$

 $L_H = (\sqrt{3}/\pi)\phi_0/HW.$

Décohérence et interactions électron-électron

Mécanisme microscopique Rôle du désordre Dimensionalité

Lien avec le bruit de Nyquist Effets géométriques: Effets de réseau

Expériences:

Comment mesurer le temps de cohérence de phase: Séparer des effets thermiques: moyenner sur le désordre Localisation faible

Temps de cohérence de phase dans un système isolé?

Interaction coulombienne: écrantage statique et dynamique

$$U(\mathbf{R}) = \frac{e^2}{R} \exp{-\kappa R}$$

Т

 $\kappa^2 = 8\pi e^2 \nu \Omega$ (Poisson et compressibilité du gaz de Fermi)

 $v = \sum_{i} \delta(\varepsilon_{i} - \varepsilon)$ densité d'états

 $\kappa = 2\pi / \lambda_{TF}$

 $\begin{array}{l} \lambda_{TF} \text{ longueur d'écrantage} \\ \textbf{Thomas Fermi} \\ \text{de l'ordre de } \lambda_{F} \end{array}$

$$U(q) = \frac{4\pi e^2}{q^2 + \kappa^2} \sim \frac{\Omega}{(2\nu)}$$
à petit q

A fréquence finie la diffusion rend l'écrantage moins efficace:

$$U(q,\omega) = \frac{U_0(q)}{\epsilon(q,\omega)} \quad U(q,\omega) = U_0 \frac{i\omega + Dq^2}{Dq^2}$$

Sans désordre K_{i i',jj} = Cte= $U_0^2 \sim 1/v^2$ ħ/ $\tau(\epsilon) = \epsilon^2/\epsilon_F$ temps de vie d'une quasiparticule de Landau

Interférences dans un gaz 2D GaAs/GaAlAs

FIG. 1. A top view of one of the devices used in the experiment ($L = 4.30 \ \mu m$). The light areas are the metallic gates d posited on top of the the GaAs/AlGaAs heterostructure.

$$\frac{1}{\tau_{e-e}} = \frac{E_F}{4\pi\hbar} \left(\frac{\Delta}{E_F}\right)^2 \left[\ln\left(\frac{E_F}{\Delta}\right) + \ln\left(\frac{2Q_{\rm TF}}{k_F}\right) + \frac{1}{2}\right]$$

Yacoby et al. 1991

Calcul du temps de relaxation $\tau(\epsilon)$ d'un électron d'énergie ϵ

$$\frac{\hbar}{\tau(\epsilon)} = \frac{4\pi}{\nu} \int_{0}^{\epsilon} d\omega \int_{\omega}^{0} d\epsilon' \delta(\epsilon - \epsilon_{i}) \delta(\epsilon' - \epsilon'_{i}) \delta(\epsilon - \omega - \epsilon_{j}) \delta(\epsilon' + \omega - \epsilon'_{j}) K_{ij,i'j'}$$
Avec désordre:

$$\frac{\hbar}{\tau(\epsilon)} = \nu \int_{0}^{\epsilon} \omega d\omega \sum_{\vec{q}} |U_{q}(\omega)|^{2} \left[Re \frac{1}{-i\omega + Dq^{2}} \right]^{2}$$

$$\mathcal{Q} d^{d}q \qquad \frac{1/\nu^{2}}{\omega^{2} + D^{2}q^{4}}$$

$$K(\omega) = U_{0}^{2}(\omega/D)^{d/2-2}$$

$$\frac{\hbar}{\tau(\epsilon)} \propto \frac{\Omega}{\nu} \left[\frac{\epsilon}{\hbar D}\right]^{d/2}$$

à 1D $\hbar/\tau(\epsilon) >> \epsilon$ Instabilité du gaz d'électrons d =2 et 1? Importance des collisions avec petit ϵ dans

> Altshuler Aronov Ackermans Montambaux

Effet de la température:
$$\tau_{\phi}(\mathbf{T})$$

$$\frac{\hbar}{\tau(\epsilon,T)} = \int_{0}^{\epsilon} d\omega K(\omega) f(\epsilon) (1 - f(\epsilon - \omega)) f(\epsilon') (1 - f(\epsilon' + \omega)) d\epsilon'$$

$$\sim 1 \text{ pour } \epsilon < \mathbf{k}_{B} \mathbf{T} \qquad \mathbf{k}_{B} \mathbf{T} \text{ pour } \omega < \mathbf{k}_{B} \mathbf{T}$$

$$\hbar / \tau_{\phi}(\mathbf{T}) = \frac{\hbar}{\tau(0,T)} \simeq k_{B} T \int_{0}^{k_{B}T} K(\omega) d\omega$$

Diverge lorsque
$$\omega$$
 tend vers 0!

Effet de la température:
$$\tau_{\phi}(\mathbf{T})$$

$$\frac{\hbar}{\tau(\epsilon,T)} = \int_{0}^{\epsilon} d\omega K(\omega) f(\epsilon)(1 - f(\epsilon - \omega)) f(\epsilon')(1 - f(\epsilon' + \omega)) d\epsilon'$$

$$\sim 1 \text{ pour } \epsilon < k_{B}T \qquad k_{B}T \text{ pour } \omega < k_{B}T$$

$$\hbar / \tau_{\phi}(\mathbf{T}) = \frac{\hbar}{\tau(0,T)} \simeq k_{B}T \int_{\mathbf{k}}^{k_{B}T} K(\omega) d\omega$$

$$\hbar / \tau_{\phi}(\mathbf{T}) = \hbar (k_{B}T/S \ m \ D^{\frac{1}{2}})^{\frac{2}{3}}$$

Autre raisonnement: décohérence et bruit de Nyquist à 1D

$$\begin{split} \langle e^{i\Phi} \rangle_{\mathcal{C},T} &= \langle e^{-\frac{1}{2} \langle \Phi^2 \rangle_T} \rangle_{\mathcal{C}} = e^{-\frac{1}{2} \langle \Phi^2 \rangle_{T,C}} \\ \Phi &= \frac{e}{\hbar} \int_0^t \mathrm{d}\tau [V(r(\tau),\tau) - V(r(t-\tau),\tau)] \\ \langle \Phi^2 \rangle &= \frac{e^2}{\hbar^2} \langle \int \mathrm{d}\tau_1 \mathrm{d}\tau_2 [V(r(\tau_1),\tau_1) - V(r(\overline{\tau_1}),\tau_1)] [V(r(\tau_2),\tau_2) - V(r(\overline{\tau_2}),\tau_2)] \rangle \\ \langle V(r,t)V(r',t') \rangle &= \delta(t-t') \langle V(r)V(r') \rangle \\ \langle \Phi^2 \rangle &= \frac{e^2}{\hbar^2} \langle \int_0^t \mathrm{d}\tau [V(r(\tau)) - V(r(\overline{\tau_1}))]^2 \rangle \\ \langle \Delta V^2 \rangle_T(\omega) &= 2k_B T R \\ R &= \frac{|r(\tau) - r(\overline{\tau})|}{\sigma_D S} \sim \mathrm{D} \, \mathrm{t}^{1/2} / \sigma_\mathrm{D} \mathrm{S} \end{split}$$

 $\langle e^{i\Phi} \rangle_{\mathcal{C},T} \approx e^{\frac{-e^2 k_B T \sqrt{D}}{\hbar^2 \sigma_D S} t^{3/2}} = e^{(-t/\tau_N)^{3/2}} \qquad \qquad \mathsf{T}_{N} = \mathsf{T}_{\Phi} \propto \mathsf{T}^{-2/3}$

Mesures sur des fils d'or

Cohérence de phase sur un réseau: effets géométriques

Cohérence de phase sur un réseau: effets géométriques

2 DEG samples

Networks of 10⁶ rings etched in GaAs/AlGaAs 2DElec.Gas

Strongly anharmonic magnetoresistance signal

Ferrier et al. 2004

The harmonics contents of oscillations is controlled by L_{ϕ}/a

$$\Delta G = -\frac{e^2}{h} \frac{L_{\varphi}}{L} \sum a_n \cos\left(4n\pi \frac{\phi}{\phi_0}\right)$$

1st harmonic

$$a_1 = \alpha \exp(-4a/L_{\varphi}) + \beta \exp(-6a/L_{\varphi}) + \dots$$

2nd harmonic

$$a_2 = \gamma \exp(-6a/L_{\varphi}) + \delta \exp(-8a/L_{\varphi}) + \dots$$

More important in a network Compared to a necklace

Universal coefficients for a given network geometry (G.Montambaux, C.Texier) Harmonics ratio depends <u>only</u> on L_{a}/a Very good agreement experience/theory (diffusive regime, weak interactions)

Surprising agreement up to the limit $g(L_{\phi}) \sim 1$ i.e very close to Anderson Localisation ! Différences entre $L_{\varphi}^{osc}(T)$ et $L_{\varphi}^{wire}(T)$

? Peut on mesurer L_{ϕ} dans un système isolé

Ferrier et al. 2008

Electron-electron interactions with small energy exchange

Noise induced phase fluctuations:

(Altshuler, Aronov, Khmelnitskii)

$$\frac{1}{\tau_{\varphi}} \sim \frac{\langle \varphi_{2}(t) \rangle}{t} \propto \int_{\omega}^{T} \frac{T \, d\omega}{\sqrt{\omega}}$$

Assuming exponential relaxation

Oc Low energy cut off depends on the geometry (Ludwig Mirlin 04 , Texier Montambaux 05)

1D wire geometry $\omega c=1/\tau_{\phi} \Rightarrow L_{\phi}=(D\tau_{\phi})^{1/2} \propto T^{-1/3}$ Ring geometry $\omega c=D/a^2 \Rightarrow L_{\phi (AAS)} \propto T^{-1/2}$ Network ?

Fitting the envelope

Only one effective channel!

$L_{\phi} \propto T^{-1/3} \, \text{from 1K}$ to 25 mK

Différences entre $L_{\varphi}^{osc}(T)$ et $L_{\varphi}^{wire}(T)$

? Peut on mesurer L_{ϕ} dans un système isolé

Ferrier et al. 2008

Electron-electron interactions with small energy exchange

Noise induced phase fluctuations:

(Altshuler, Aronov, Khmelnitskii)

$$\frac{1}{\tau_{\varphi}} \sim \frac{\langle \varphi_{2}(t) \rangle}{t} \propto \int_{\omega}^{T} \frac{T \, d\omega}{\sqrt{\omega}}$$

Assuming exponential relaxation

Oc Low energy cut off depends on the geometry (Ludwig Mirlin 04 , Texier Montambaux 05)

1D wire geometry $\omega c=1/\tau_{\phi} \Rightarrow L_{\phi}=(D\tau_{\phi})^{1/2} \propto T^{-1/3}$ Ring geometry $\omega c=D/a^2 \Rightarrow L_{\phi (AAS)} \propto T^{-1/2}$ Network ?

Mesurer Lø dans un système isolé?

Contact less conductance measurements..

Inductive measurements on isolated rings Superconducting resonator 1 mm 000000 f₀= 200-400 MHz ← _____ Q=2.10⁵ T<1K ____ 0000 000 12 µm _____ Pabs capacit ____ inductance $\frac{f_0}{2Q}$ _____

 $rac{\delta f}{f} = -rac{1}{2} \ N \ k_m \chi^{'} \ { hicksim} {f Im} \ {f G}$ $\delta(rac{1}{Q}) = N \; k_m \chi^{''}$ ~Re G Magnetic Susceptibility $\Phi_{\bullet}^{(0)}$

Related to persistent

currents

Capacitive measurements on isolated rings

Electromagnetic Response of isolated systems

Magnetic Response

 $M = \chi B = I S$

Orbital magnetic moment

Electric response

Electric dipole : $d = \alpha E$ Polarisability : $\alpha = \varepsilon_0 R^3 (1 - \lambda_s / L)$ Only detectable in GaAs $\lambda_s = 20nm$

$$\delta\alpha(\omega) = -\frac{2e^2}{E^2}\delta\left(\sum_{\alpha\neq\beta}\frac{f_\alpha - f_\beta}{\epsilon_{\alpha\beta}}\frac{\epsilon_{\alpha\beta} - i\gamma}{\epsilon_{\alpha\beta} + \omega - i\gamma}|F_{\alpha\beta}|^2 + \sum_{\alpha}\frac{\partial f_\alpha}{\partial\epsilon_\alpha}\frac{i\gamma}{i\gamma - \omega}|F_{\alpha\alpha}|^2\right)$$

Energy denominators $\epsilon_{\alpha\beta}$ matrix Elements $J_{\alpha\beta}$ et $F_{\alpha\beta}$ independent random variables Correlation Fct dednf only on energy difference $\epsilon_{\alpha\beta}$ Calculated within Non linear σ model *Efetof*, *Blanter*, *Mirlin*

Frequency dependent magneto polarisability

$$\delta\alpha(\omega) = -\frac{2e^2}{E^2}\delta\left(\sum_{\alpha\neq\beta}\frac{f_\alpha - f_\beta}{\epsilon_{\alpha\beta}}\frac{\epsilon_{\alpha\beta} - i\gamma}{\epsilon_{\alpha\beta} + \omega - i\gamma}|F_{\alpha\beta}|^2 + \sum_{\alpha}\frac{\partial f_\alpha}{\partial\epsilon_\alpha}\frac{i\gamma}{i\gamma - \omega}|F_{\alpha\alpha}|^2\right)$$

F: screened potential, γ level width, g dimension -less Drude conductance

$$rac{\delta_{\Phi} lpha'}{lpha} \propto rac{1}{g} rac{\lambda_s}{W} \quad \mathsf{f}(\omega)$$

Efetov PRL(1996), Noat et al. EPL(1996),PRB(2002) Blanter et Mirlin PRB(1998,2001)

Sensitivity of matrix elements $F_{\alpha\beta}$ to time reversal symmetry

$$f(\omega) \longrightarrow 1 \quad \omega \gg \Delta$$

depends on level occupation
Isolated Rings:
Canonical Ensemble T<< Δ
 f_{α} =0 or 1
Flux dependence of energy denominators
and matrix elements cancel each other!

Magnetopolarisability of GaAs Rings 0,3 $\Phi_0/$ 0 0 00000 0,2 δf/f₀ 0 800000000000 0 0 - 10⁶ 0 0 0 0 0,1 0 0 0 0 00 f₀=348.7 MHz 00 100 Hz 00 Deblock et al. PRL 2001 80 -20 20 0 4(-40 B (G)

Electric response larger than magnetic one!

- periodic in $\Phi_0/2$
- positive at low field : field enhanced screening
- amplitude : $\delta \alpha / \alpha = 7 \ 10^{-4}$

Finite frequency $h\omega \sim \Delta$

Dépendance en température de $\delta ImG(\phi)$

Mesure de ${\rm L}_{\phi}$ dans un système isolé à spectre discret Compatible avec ${\rm L}_{\phi} \sim \alpha/T$

Décohérence et magnétopolarisabilité mésoscopique

Prédictions théoriques: Treiber et al. 2013

$$\delta_{\phi_0/2} F^{(1)}(1/R,\omega) = \frac{i\omega \exp(-\sqrt{(\gamma - i\omega)/E_{\text{Th}}(L)})}{\sqrt{E_{\text{Th}}(L)(\gamma - i\omega)}}.$$

 $\gamma_{0D} = a\Delta T^2/E_{Th}^2$ $\gamma_{erg} = b\Delta T/E_{Th}$