Signatures expérimentales des interactions électroniques dans le transport mésoscopique

Introduction : ordres de grandeur, rappels transport cohérent

Interactions et cohérence de phase

Désordre, dimensionnalité, environnement électromagnétique, géométrie Comment déterminer le temps de cohérence de phase dans un système fini

Interactions et propriétés thermodynamiques

Correction à la densité d'états d'un système diffusif ; rôle de la dimensionalité Système localisé : gap de Coulomb Magnétisme orbital

Transport hors d'équilibre Rectification mésocopique et interactions

Que se passe t'il à la limite 1D?

- Instabilité du liquide de Fermi,
- Exemple fils quantiques et nanotubes de carbone
- Peut on parler de comportement liquide de Luttinger dans les conducteurs 1D
- Blocage de Coulomb dynamique et environnement électromagnétique

Interactions dans les boîtes quantiques

- Du blocage de Coulomb à l'effet Kondo
- Contacts supraconducteurs : compétition entre effet Kondo et effet Josephson

Interactions et densité d'états

$$G_{\epsilon}^{R,A} = (\epsilon - H \pm i0)^{-1} \quad \delta(\epsilon - H) = Im(G_{\epsilon}^R)/2\pi = (G_{\epsilon}^R - G_{\epsilon}^A)/2\pi$$

Régime diffusif sans interactions: $\nu = Tr (\delta(\epsilon-H)) \sim N/E_F$ Pas de correction quantique à la DOS moyenne

En présence d'interactions: Perturbation des niveaux électroniques à l'ordre 1:

$$\delta \epsilon_i^H = \sum_i f(\epsilon_j) \int U(r-r') \phi_j^*(r') \phi_j(r') dr' \phi_i^*(r) \phi_i(r) dr$$

Terme de Hartree

$$\delta \epsilon_i^F = \sum_j f(\epsilon_j) \int U(r-r') \phi_j^*(r') \phi_j(r) \phi_i^*(r) \phi_i(r') dr dr'$$

Terme de Fock (échange)

Interactions et densité d'états

$$\Delta_{\epsilon} = \frac{1}{\nu_0} \sum_{i} \delta(\epsilon - \epsilon_i) \delta\epsilon_i \qquad \frac{\delta\nu}{\nu_0} = -\partial \Delta_{\epsilon} / \partial\epsilon$$

Terme de Fock

$$\begin{split} \delta\epsilon_{i}^{F} &= \sum_{j} f(\epsilon_{j}) \int U(r-r') \phi_{j}^{*}(r') \phi_{j}(r) \phi_{i}^{*}(r) \phi_{i}(r') dr dr' \\ \Delta_{\epsilon}^{F} &= -\frac{1}{\nu_{0}} \int_{-\infty}^{+\infty} f(\epsilon-\omega) d\omega \sum_{q} U_{q} Re \frac{1}{i\omega + Dq^{2}} \\ \text{Diffuson: contribution dominante} \end{split}$$

$$\delta \nu^{F} = -U \left[\frac{\epsilon}{D}\right]^{d/2} \Omega/\epsilon$$

 $\delta \nu^{\rm H} < \delta \nu^{\rm F}$ si écrantaae modéré

Anomalie en:
$$\begin{cases} -\epsilon^{1/2} & à 3D \\ -Log(\epsilon) à 2D \\ -\epsilon^{-1/2} & a 1D \end{cases}$$

Longueur caractéristique $L_{e} = (\hbar D / \epsilon)^{1/2}$

A 1D system of interacting electrons

•<u>At 3D</u>, screening is efficient : excitations are quasi-particles, with small residual interactions (Fermi liquid).

• <u>At 1D</u>, interactions are much stronger: no quasi-particles, Luttinger liquid, with long wavelength charge and spin excitations.

Transport électronique à une dimension (un seule mode de conduction!)

Linéarisation de la relation de dispersion et bosonisation

Long wave length excitations

$$\partial_t \rho_{\pm} = \pm v_F \partial_x \rho_{\pm}$$

$$\rho_+(x - v_F t)$$
$$\rho_-(x + v_F t)$$

$$\rho_+(x - v_F t)$$

Total charge density (q <<k_F component):

Total current density (q <<k_F component):

$$\rho = \rho_{+} + \rho_{-}$$
$$j = v_F \left[\rho_{+} - \rho_{-}\right]$$

Instabilités électroniques du conducteur unidimensionnel

For repulsive interactions

Modes propres en présence d'interactions

(pas d'effets de spin)

Analogie avec modes de transmission sur une ligne LC C=2 g(e^2/h)/v_F L = ($h/2e^2$)/ g v_F

Conductance du fil infini G renormalisée: 2 g e²/h

Mesurable? En général NON ! (cas particulier effet Hall quantique fractionnaire)

Conductance tunnel

 $G(T) \propto T^{\alpha}$ for $eV << k_B T$

Nanotubes de Carbone

Des molécules macroscopiques rigides!

Helicité

Folding graphene into tubes

Band structure of a carbon nanotube

Each band corresponds to a different k_{perp}

Metallic tube if : n - m = 3 q with q integer Small opening at $\frac{1}{2}$ filling due :

- disorder
- deformation of curved C-C: 10 meV (zig-zag & chiral)

 $\frac{dI}{dV}(V,r) \propto \sum_{|eV-\varepsilon_j|<\delta} |\psi_j(r)|^2 \sim \rho_{\rm S}({\sf E}_{\rm F}-{\rm eV},{\bf r}) \quad \delta = {\rm energy\ resolution}$

<u>Two modes</u> : Topography : I = constant, z is measured Spectroscopy : z is fixed, I(V) is measured

Topography of carbon nanotubes

Odom et al., Nature (1998)

Determination of the chirality

Density of states measured by STM

Relation between structure and electronic properties

Observation de nanotubes dans un faisceau

Lin et al Nature Materials 2010

Substrat Au

Spectroscopie STM Gap modifié par écrantage du substrat

1D imaging of wavefunctions

Venema *et al.*, Science (1999)

Interference of wave functions

Nanotube « Armchair »

Metallic Carbon Nanotube Ideal 1D conductor

> At most 2 conduction modes $- v_{F} \sim 10^{6} \text{ m/s}$ Long elastic mean free path: $l_{e} \sim 0.3$ to 1µm → Resistance minimum $R_{min} = R_0/2 = h/4e^2 = 6.5 k\Omega/tube$ Normal contacts No quantum diffusive regime: Localisation length $\sim I_e$ Tunnel contacts Quantum Dot: Level spacing : $hv_F/L \sim 1meV \sim 10K!$

SWNT on tunnel contacts: T> Ec

Luttinger liquid behavior?

A 1D system of interacting electrons

•<u>At 3D</u>, screening is efficient : excitations are quasi-particles, with small residual interactions (Fermi liquid).

• <u>At 1D</u>, interactions are much stronger: no quasi-particles, Luttinger liquid, with long wavelength charge and spin excitations.

Interaction strength characterized by the LL parameter g g = 1 no interaction g < 1 repulsive interaction Ec charging energy, Δ level spacing

Tunneling in SW carbon nanotubes

Bulk versus end tunneling

Metal-metal junction

Environmental Coulomb Blockade

Ingold, Nazarov 1992

Power laws not specific of Luttinger Liquid physics...

$$I = G_t \iint^{eV} P(E_1 - E_2) dE_1 dE_2 \quad eV < Ec, \qquad dI/dV \sim V^{2/g}$$
$$g \sim Z(0)/R_q$$

Not in contradiction with the LL picture: Luttinger Liquids can be modelised by a LC transmission line...

Blocage de Coulomb (Statique)

Blocage de Coulomb dynamique

Caractéristique courant tension

"Hamiltonien" tunnel

Doit coupler les deux électrodes et l'environnement

Hamiltonien tunnel
(traité en perturbation)
$$H_T = T + T^{\dagger}$$
 $T = e^{i\varphi} \sum_{\ell,r} t_{\ell r} c_{\ell}^{\dagger} c_r$
tra
recouv
foncti
 $\phi(t) = eV_{dc}t/\hbar + \tilde{\phi}(t)$ the transférée de e

Charge et phase sont des variables

Phase électromagnétique

$$\begin{bmatrix} \varphi , Q_T \end{bmatrix} = ie$$
$$e^{-i\varphi} Q_T e^{i\varphi} = Q_T + e$$

Caractéristique courant tension

Caractéristique courant tension

$$\vec{\Gamma}(V) = \frac{1}{e^2 R_T} \int_{-\infty}^{+\infty} dE dE' \int_{-\infty}^{+\infty} \frac{dt}{2\pi\hbar} \exp\left(\frac{i}{\hbar} (E - E' + eV)t\right) f(E)[1 - f(E')] \\ \mathbf{X} \sum_{R,R'} P_{\beta}(R) \langle R|e^{i\tilde{\varphi}(t)}|R'\rangle \langle R'|e^{-i\tilde{\varphi}(0)}|R\rangle.$$

Théorème fluctuation J(dissipation

$$(\mathbf{t}) = \langle \tilde{\varphi}(t)\tilde{\varphi}(0) \rangle = 2 \int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{\omega} \frac{\mathrm{Re}Z_t(\omega)}{R_K} \frac{e^{-i\omega t}}{1 - e^{-\beta\hbar\omega}}.$$

$$P(E) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} \mathrm{d}t \exp\left[J(t) + \frac{i}{\hbar}Et\right].$$

$$\vec{\Gamma}(V) = \frac{1}{e^2 R_T} \int_{-\infty}^{+\infty} dE dE' f(E) [1 - f(E' + eV)] P(E - E')$$
$$I(V) = \frac{1}{e R_T} (1 - e^{-\beta eV}) \int_{-\infty}^{+\infty} dE \frac{E}{1 - e^{-\beta E}} P(eV - E).$$

Limite T=0
$$I(V) = \frac{1}{eR_T} \int_0^{eV} dE (eV - E)P(E).$$

$$I(V) = \frac{1}{R_T} \left[V - \frac{e}{2C} + \frac{g}{\pi^2} \frac{e^2}{4C^2} \frac{1}{V} \right] \quad \text{for } V \to \infty.$$

Propriétés de dI/dV

Cas où Z=R//C

$$\operatorname{Re} Z(\omega) = \frac{R}{1 + (RC\omega)^2}$$

échelles d'énergies :

$$eV$$
énergie disponible de la source $\frac{e^2}{2C} = E_C$ énergie de charge du condensateur $\frac{\hbar}{RC} = E_{RC}$ énergie liée au temps RC
(fréquence de coupure de l'environnment) kT énergie des fluctuations thermique

$$\frac{E_C}{E_{RC}} = \pi R \frac{e^2}{h} = \pi \frac{R}{R_K}$$

Situations différentes selon $R \leq R_{K}$

Propriétés de dI/dV

Propriétés de dI/dV

P.Joyez Cargèse 2008

dI/dV faible blocage : "loi de puissance en tension" exemple expérimental

observations expérimentales

Cleland '90

Environnement = résonateur électromagnétique

De la jonction tunnel au fil quantique

Environnement contrôlable

Jezoin et al 2012, 201

Canaux de bord effet Hall quantique Conductance élevée ~ e²/h

De la jonction tunnel au fil quantique

Environnement contrôlable

Canaux de bord effet Hall quantique Conductance élevée ~ e²/h De la jonction tunnel au fil quantique

Environnement et jonction contrôlables

Correspondance entre les problèmes de blocage de Coulomb dynamique et liquide de Luttinger!

Structure de bande du graphène

Band structure of graphene

Electronic Structure of a graphene sheet

Hexagonal lattice: 2 atoms per cell

Relation between helicity and metallic character

$$\vec{C} = n\vec{a}_1 + \vec{m}\vec{a}_2$$
$$\vec{C} \times \vec{\Gamma}K = 2\pi (m-n)/3$$

Ψ p

, 1 Metallic tubes are such that m-n is multiple of 3

Cleaved edge GaAs/GaAlAs

Yacoby, de Piciotto

Tubes Zig/Zag Never really metallic!

Small gaps due the Distortion of hexagons On a cylinder

Nanotube crossing

Crossing obtained by AFM manipulation

 $\alpha_{\text{bulk-bulk}}$ =2 α_{bulk}

=(1/g+g-2)/4

Postma et al., PRB (2000)