Boites Quantiques : Du blocage de Coulomb à l'effet Kondo

Limite électrodes de très faible transmission: Spectre d'addition et énergie de charge Transmission moyenne: Effet Kondo Expériences GaAs et nanotubes de carbone Electrodes supraconductrices: Compétition effet Kondo et effet Josephson

Boite Quantique: Energies caractéristiques

$$H_{dot} = \sum_{ns} \epsilon_n d_{ns}^+ d_{ns} + E_C (\hat{N} - N_0)^2$$

$$H_{leads} = \sum_{\alpha ks} \xi_k c^+_{\alpha ks} c_{\alpha ks} \; ,$$

$$H_{tunneling} = \sum_{\alpha kns} t_{\alpha n} c^+_{\alpha ks} d_{ns} + H.c.$$

δE= espacement entre niveaux électroniques de la boite

$$E_{add}(N) = \mu(N+1) - \mu(N) = E_C + \delta E$$

$$\Gamma_n = \sum_{\alpha} \Gamma_{\alpha n} = \sum_{\alpha} \pi \nu |t_{\alpha n}^2|$$

Nanotubes on Tunnel contacts (R>>R_Q)

Tans et al., Nature (1997)

Spectroscopy of electronic levels

Blocage de Coulomb et transistor à 1 électron

Dégénérescence orbitale

Evolution du blocage de Coulomb pour de électrodes plus passantes

Augmentation de la conductance à basse température pour un nb impair d'électrons

Cleuziou et al. PRl 2013

Au delà de l'ordre 1: cotunneling

Pustilnik, Glazman J.Phys C 2004

spins

Contacts with intermediate transmission Quantum dot with odd number of electrons

Transport takes place through multiple order spin flip events Anderson Impurity model $H_{eff} = J_{eff} \sigma \cdot S$

Formation of a many body singlet :

$$\begin{split} &J_{eff} = \Gamma \ / \nu \ U \\ &\nu \text{: DOS} \quad \Gamma = |t|^2 \nu \ \text{width of energy level } \epsilon_0 \end{split}$$

 $\epsilon_0 + U$

En

$$L_{\rm K} = h v_{\rm F}/T_{\rm K}$$

 $T_{K} = (\mathbf{U} \Gamma)^{1/2} \exp(-1/J_{eff} \nu)$

Importance of Coulomb repulsion ${\sf U}$

Hamiltoniens Anderson et Kondo

Effet Kondo: Emilie Dupont

$$\begin{split} H_{A} &= \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} a_{\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}\sigma} + \varepsilon_{d} \sum_{\sigma} a_{d\sigma}^{\dagger} a_{d\sigma} + \sum_{\mathbf{k},\sigma} \left(V_{\mathbf{k}d} a_{\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}\sigma} + \mathrm{h.c} \right) + U n_{d\uparrow} n_{d} \\ H &= \sum_{\mathbf{k},\mathbf{k}'} J_{\mathbf{k}\mathbf{k}'} \mathbf{S} \sum_{\sigma,\sigma'} a_{\mathbf{k}\sigma}^{\dagger} \sigma_{\sigma\sigma'} a_{\mathbf{k}'\sigma'} \\ T_{(\mathbf{k}\sigma)+(d-\sigma) \to (\mathbf{k}'-\sigma)+(d\sigma)} &= -\frac{1}{2} J_{\mathbf{k}\mathbf{k}'} \\ J_{\mathbf{k}\mathbf{k}'} &= 2V_{\mathbf{k}d} V_{d\mathbf{k}'} \left(\frac{1}{\varepsilon_{\mathbf{k}} - \varepsilon_{d} - U} + \frac{1}{\varepsilon_{d} - \varepsilon_{\mathbf{k}'}} \right) \overset{\varepsilon_{d}}{ \varepsilon_{\mathbf{k}}} \\ I_{eff} &= -4 \frac{|V_{\mathbf{k}d}|^{2}}{U} \propto 1/U \\ Divergence \text{ logarithmique du taux de collision} \\ a \text{ basse température} \\ \text{Formation d'une résonance au niveau de Fermi} \\ \end{split}$$

Renormalisation du couplage: Température de Kondo

Trous D δD $\epsilon_F = 0$ Particules δD -D

Calcul à l'ordre 2 $\frac{dJ}{d\ln D} = -\mathbf{V} \quad J^2$

D e
$$^{-1/(2Jv)} = \tilde{D} e ^{-1/(2Jv)} = Cte = k_B T_K$$

Boite quantique D ~ U Termes d'ordre supérieur D ~ U (Γ/U)^{1/2} = (Γ U)^{1/2} technique adéquate: NRG

Contacts with intermediate transmission Quantum dot with odd number of electrons

Transport takes place through multiple order spin flip events

Quantum dot with odd number of electrons Contacts with intermediate transmission t~1

Transport takes place through multiple order spin flip events Formation of a many body singlet : Kondo resonance

Increase of conductance at low temperature up to $2e^2/h$...

Boite quantique GaAs/GaAlAs

Kondo effect in GaAs/GaAlAs Quantum dots

Goldhaber Gordon et al. Cronenwett et al. 1998

Van der Wiel et al. 2000

Kondo Physics in carbon nanotubes

Cobden *et al.,* Nature (2001)

N even:

Conductance decreases with temperature N odd:

Conductance increases with temperature

Tuning the Kondo temperature with gate voltage

Gerland et al. PRL 2000 Minimum in the center of the Kondo ridge

 $H_{\rm QD} = \varepsilon_0 (n_\uparrow + n_\downarrow) + U \, n_\uparrow n_\downarrow$

$$H_T = \sum_{k,\sigma} (V_k c_{k,\sigma}^{\dagger} d_{\sigma} + \text{H.c.}). \quad \Gamma = \pi \rho |V|^2.$$

$$T_{K} = (U\Gamma/2)^{1/2} e^{\pi \varepsilon_{d}(\varepsilon_{d} + U)/2\Gamma U}$$
 mV

Tuning the Kondo temperature with gate voltage

Suppraconducteurs en tant que miroirs à conjugaison de phase

courant NS à V=0:

électron rétro-réfléchi en un trou (Andreev reflection)

une charge 2e passe de N vers S

Etats confinés: superposition quantique de fonctions d'ondes électrons et trous Supercourant à V=0!

Proximity induced superconductivity in all sorts of conductors

Spectrum of Andreev bound states: long junction Diagonalisation of the Bogoliubov de Gennes Hamiltonian

Spectrum of Andreev bound states Long junction a) 0.20 3.20 b) 0.15 3.15 E/∆ E/Δ 0.10 3.10 0.05 3.05 0.00 3.00 1 2 3 5 6 0 Δ

Below Δ : Φ_0 periodic level spacing N part

φ

Avove Δ : 2 Φ_0 periodic level spacing N +S part

3

φ

4

5

6

2

Long junction: no simple relation between Andreev states and eigen transmission channels Josephson current $I_{s}(\phi) = -\sum_{n \neq n} f_{n}(\phi) \partial \epsilon_{n}(\phi) / \partial \phi$

0

1

Guessing game... What's what?

Supercourant dans un nanotube de carbone sur contacts supraconducteurs

Josephson Transistor with a carbon nanotube

Superconducting Contacts

Modulation of Josephson current With electrostatic gate voltage

Short junctions $L < \xi_S$

Superconducting Interference Device Cleuziou et al. Nature Nanotechnology 2007

Competition between Kondo and Josephson effects

Competition between Kondo and Josephson effects

Large amplitude of Ic independent of the transmission of the electrodes!

Enhanced by Coulomb interactions!

Evolution of the density of states Λ 3 $\Delta < T_k$ U / π Γ =0.5 $T_k > \Delta$ ••••• U / π Γ =2 2.5 - $U/\pi\Gamma$ = 3 $U/\pi\Gamma=4$ (3) 1.5 $T_k < \Delta$ 0.5 -0.4 -0.2 0 0.2 0.4 0.6

T_k,

small perturbation in the DOS quasiparticles can screen the magnetic impurity

> Bauer et al. J. Phys. (2007) NRG calculations

Functional RG calculations

 $0,\pi$ transition tuned with the gate voltage

Current phase relation in the vicinity of the O/pi transition..

Choi et al. 2004 Karrasch et al 2008

Phase bias induced Singlet doublet transition

Phase bias induced Singlet doublet transition

Magnetic state of the junction can be monitored with phase

Tuning Josephson current with Kondo physics

Carbon nanotube on S contacts in a dissipative environment

Al (100 nm) Ti (6 nm)

> A.Eichler, R.Deblock, M.Weiss C.Schönenberger, H.B Collaboration Orsay Basel

Josephson current and Kondo effect

Josephson effect observed in the Kondo regime

Competition between Kondo and Josephson effects

Comparison between experiment and theory

Why are experimental values of Ic too small (facteur 3)? Finite temperature? Influence of the doped substrate?

Importance of the asymmetry between the electrodes

Nearly identical values of T_K and $\Gamma = \Gamma_1 + \Gamma_2$ but different values of $\Gamma_1 / \Gamma_2 = 1$ determined from $G_K = 8 \frac{\Gamma_1 \Gamma_2}{(\Gamma_1 + \Gamma_2)^2}$ $T \ll T_K$

Importance of the asymmetry between the electrodes

Insertion of a carbon nanotube into a SQUID

Inspired from Della Roca et al. 2007

Ic (Junction) >> Ic (tube)

The flux dependence of Ic(SQUID) is dominated by $I_c(f)$ (tube)

Insertion of a carbon nanotube into a SQUID

Highly transmitting electrodes

Anharmonic current phase relation For large transmissions! Kondo regime still not observed....

J. Basset et al. 2011

Comparaison entre expériences et résultats obtenus par NRG

Pillet et al. PRB 2013

