

Isolants topologiques: transport électronique

Laurent Lévy Institut Néel, Univ. de Grenoble

Exemple: modèle BHZ de l'effet Hall de spin

Effet du confinement dans un puit quantique

Transition gap normal aux faibles épaisseurs a un gap inverse au dessus de 6.7nm

Croissance MBE

HgCdTe, x=0.7, 25nm	
HgCdTe : I, 9 nm	
HgCdTe, 10 nm	
HgTe well, 8,0 nm	
HgCdTe, 10 nm	
HgCdTe : I, 9 nm	
HgCdTe, x=0.7,100 nm	
CdTe buffer ca.60 nm	

Formation des états de bord du quantum spin-Hall

L'effet Hall de spin

Konig et al, Science 318, 766(2007)

Conductance multi-terminaux (barre de Hall)

Résultat (Konig et al)

Premiers pas vers les applications en spintronique: le filtre « H » de spin

Material tuning: example of Bi_{1-x}Sb_x

Comment réduire la conductivité de volume ?

Ajouter des accepteurs (Ca..)

Sb in Bi2Se3 (Analytis et al Nat Phys 2010)

Extraction des états de surface: oscillations de SdH

а

Autre approche: réduction dimensionnelle

-10

0

Index

10

0 B(T) 1/B (T-1)

of surface states

Système 3D avec grilles HgTe-contraint

Magneto-transport measurements: Gated Hall-bar structures

Optical lithography (Nanofab) + chemical etching (CEA-LETI) Strained HgTe 0,07%

Animation: magnéto-galvanométrie porteur massif

Animation: magnéto-galvanométrie fermions de Dirac

Magnetoconductance bas champ dand le modele de Dirac

Graphene Novosolov-Geim ,Science 2005

Angle de Hall angle, point de Dirac

Key to WL measurement: cannot substract high-T data as $\sigma_{xx}(T)$

Correspondance densité-Vg

Antilocalisation faible

©L. Lévy, Institut Néel

Regimes d'effet Hall quantique

- Différents régimes observés
 - V<2.75 V (coexistence avec les trous) n=0 Dirac QH state phase isolante above 15 T
 -V>2.75 V deux régimes de champ
 - faces découplées
 - Bicouches

Quantum Hall plateaus

 $\sigma_{xy} = C$

 \overline{h}

Quantum Hall states

Locating the Hall states

Determination of LL filling factor $\boldsymbol{\nu}$

Quantum Hall quantization

Conclusions

- Systèmes très riches!
- 2D: QSH permet de filtrer et détecter des spins
- Magneto-transport domine par des etats de surface de Dirac
- Dirac SS: antilocalisation faible
- SdH $\rightarrow \mu \sim \sqrt{n} \propto k$ (2D) \rightarrow Dirac SS
- Plusieurs regimes d'effet Hall
- Dispositifs de spintronique